

Platform-Independent Model Driven Development

PI-MDD Executive Summary

Version 1.1

January 13, 2014

Pathfinder Solutions
www.pathfindersolns.com

+1 508-568-0068

Copyright 1995-2014, Pathfinder Solutions LLC, all rights reserved

Table Of Contents

Executive Summary.. 2

Introduction... 2

The Needs .. 3

Technical..3

Business ..3

Methodology History .. 3

Compilers...3

Early Modeling ..3

Modeling Language Standards and Automation ...4

Agile Methods and PI-MDD ...4

Test-Driven Development...4

Standards-Based Industry Best Practice...5

Steps to Adopt PI-MDD... 6

Detail Business Context/Needs..6

Assess Suitability of PI-MDD to Address Top Concerns6

Explore PI-MDD with a Pilot Project ...6

Apply on a Real Project ..7

Pivot Your Organizational Culture ..7

Summary.. 7

References ... 8

PI-MDD Executive Summary

Copyright 1995-2014, Pathfinder Solutions LLC, all rights reserved

Executive Summary

Platform-Independent Model Drive Development (PI-MDD) is an integrated agile,
test-driven and model-driven approach to architecting, developing, testing and
deploying complex, high-performance systems software. Two decades of constant
refinement by hundreds of development teams and dozens of technology and
expertise vendors spanning a range of challenging industries have optimized this
method and its supporting automation to deliver the highest performance and best
quality systems while boosting key business results. Customer-reported project
metrics show the PI-MDD approach has yielded substantial, repeatable business-level
gains including a doubling of productivity and a 10X quality gain within 14 months of
adoption (as compared with common hand-crafted coding approaches).

Introduction

The development of complex and high-performance software systems is a
challenging endeavor. Meeting both technical and business needs is increasingly
more difficult, and teams applying classic hand-crafted software development
approaches more frequently fail to deliver these required results that those that
achieve even qualified success. Simplistic “just code it” approaches relying on a
handful of talented and motivated artisans can work well for small, short duration
efforts. But typical fruits of this success – team growth and product opportunity –
quickly inflate software teams and projects beyond the point where long hours and
good intentions can make up for ambiguous architecture and inconsistent
engineering.

Model Driven Development (MDD) approaches use software modeling languages and
tools to help organize software and improve team communication. However not all
MDD approaches are able to meet the challenges faced in building complex and high-
performance systems. The Platform-Independent MDD (PI-MDD) method is an
approach incorporating key modeling techniques and automation specifically
designed to meet the unique challenges of building these types of systems. In
addition to its technical advantages, PI-MDD has been specifically tailored to boost
business results including system quality and productivity. Leveraging best practices
and industry standards evolved over decades, PI-MDD is a refined set of mutually-
supporting architectural and detailed modeling techniques applying and enforcing
key disciplines through automation. Delivering efficient and capable systems quickly,
PI-MDD also delivers substantial practical organizational improvements, with newly
adopting teams posting substantial gains in critical business results including time to
market, productivity and overall product quality within a year of adoption.

For organizations already working towards more disciplined practice and applying
MDD technologies, moving to PI-MDD may not be a far step. However for many
organizations still producing most of their software through a less structured hand-
coding culture, moving to PI-MDD can be more of a paradigm shift, requiring
explicitly staged adoption steps facilitated by training and expert mentoring.

PI-MDD Executive Summary

Copyright 1995-2014, Pathfinder Solutions LLC, all rights reserved

The Needs

Technical

Simply addressing the technical challenges in building complex, high-performance
software systems is difficult. Feature complexity, the challenge of deploying to
complex target environments, and the need to build flexible and adaptable systems
that meet all feature and performance requirements require sound techniques to
manage complexity and produce efficient implementations. Many teams face further
challenges in extending the time horizon beyond a single project to consider longer
term agility to in the face of changing requirements and volatile markets, and
ultimately the need to deliver families of products.

Business

The biggest change of the past few years has been a heightened need to
dramatically boost business results delivered by software development organizations.
Facing increasingly competitive markets, products must get to market much quicker
with higher productivity and overall systems quality. Today it is not enough to simply
deliver the system – it must be delivered on time, within budget and will full
capability at high quality.

Methodology History

Compilers

Since the dawn of complex software systems, the industry has been continually
working to manage complexity and simplify individual system elements. Two key
principles were quickly proven effective: Separation, where the complex whole is
broken down into simpler parts; and Abstraction, where focus is more on the
problem being solved and less on the implementation details of that solution.
Effective compilers for FORTRAN, C and other languages quickly showed how the
right technology can make the most of these sound techniques.

Architectural Focus and Automation evolve with the rise
in Level of Abstraction and Separation

Early Modeling

While the use of more abstract textual programming languages made gains relative
to machine and assembly programming, the pursuit of further gains pointed to
graphical languages and more specific and refined techniques for building systems.
By the late 1980's a number of methodologies based on graphical software modeling
notations posted significant successes in challenging industry segments. Object
Modeling Technique (OMT) and Shlaer-Mellor Object Oriented Analysis and Recursive
Design (OOA/RD) were prominent among several competing approaches. Tools grew

PI-MDD Executive Summary

Copyright 1995-2014, Pathfinder Solutions LLC, all rights reserved

up around the capture of these specific modeling languages, and more disciplined
approaches - like OOA/RD – through their foundational emphasis on Separation and
Abstraction, facilitated early technologies that automatically generated full
implementations from models.

Modeling Language Standards and Automation

Increasing adoption of modeling quickly drove the development of an industry
modeling language standard: the Unified Modeling Language (UML). Subsequently
the Model Driven Architecture (MDA) set of standards were built to augment UML
with standard ways to share model information and transform it to other forms,
including code. Now a broad base of modeling tools and other technology grew up
supporting the MDA standards, and advanced automation around model checking,
report generation and code generation began to evolve.

PI-MDD is based on MDA Standards, boosting business
results through higher Level of Abstraction and greater

architectural focus.

Agile Methods and PI-MDD

Agile methods have been mitigating risk and shortening schedules for over a decade.
With a focus on customer-centric sprint planning and short develop/test/integrate
cycles, Agile approaches carefully and continually manage team focus, explicitly
managing risk and maintain the pace of development – velocity. These disciplines
combined with the continuous integration and testing of small, proven increments
deliver better results than an old-school waterfall project organization. PI-MDD’s
executable models and high level of deployment automation provide a natural
architectural and implementation base for an Agile culture.

A key element of PI-MDD that makes it particularly well suited for Agile development
is the short path to testability with a PI-MDD model. With UML-level action language
and platform independence, the PI-MDD model is complete and executable. Model
development in rapid, automated develop/test cycles form an ideal nucleus capability
for Agile sprints.

Test-Driven Development

PI-MDD Executive Summary

Copyright 1995-2014, Pathfinder Solutions LLC, all rights reserved

Test Driven Development (TDD) is an Agile-based approach to building complex
system where unit test (and in some cases inter-component integration tests) are
built in advance of the product software and are used exercised upon component
implementation. The immediate exercise of these tests provides a rapid, objective
assessment of the readiness of the new capability, and dramatically improved
component quality and reduces integration time and risk.

With PI-MDD code the openness of the underlying code generation is used to
automatically generate test a framework and automation, making the creation and
maintenance of these test far less expensive in terms of time and effort. This
automation also promotes better test coverage and builds an automated regression
test base, ultimately providing a quantum boost in overall system quality. PI-MDD’s
platform independence – facilitating component testability - and flexible code
generation make TDD a natural progression of PI-MDD practice.

Standards-Based Industry Best Practice

With a standard language in UML and a wide range of modeling techniques evolving
throughout the industry, coherent and complete methodologies matured and were
applied across varying tools and in varying industry segments. Those producing
highly complex and high-performance systems found greatest success when
Separation and Abstraction could be facilitated through automation. Focusing on a
key subset of the UML with an automation-based path to implementation, the
Executable UML family of approaches (aka xUML and xtUML) emerged from the
OOA/RD community, continuing the emphasis on Separation and Abstraction. The
broadest and most flexible of these standards-based methodologies is Pathfinder
Solutions' PI-MDD:

PI-MDD automation produces optimized code using open
and standards-based technology.

Next evolutionary steps in the standards area involve Foundational UML (FUML),
bringing together vendors and practitioners with tightened standards and a reference
implementation. This continued refinement of technical standards best practices
feeds steady improvement into PI-MDD and its supporting technologies.

With a history of thousands of successfully fielded systems in service for over two
decades, the Platform Independent MDD approach has been proven to be effective in
critical industries including medical devices, aerospace, defense, and automotive. It
is the most effective way to build complex and high performance software today.

PI-MDD Executive Summary

Copyright 1995-2014, Pathfinder Solutions LLC, all rights reserved

Steps to Adopt PI-MDD

How does an organization adopt PI-MDD in a way that manages the risks of change
while still moving decisively toward the goal? They key is to establish a clear path
with incremental steps, combining careful review and introspection, enlisting the
support of proven experts and automation, and decisive steps.

Detail Business Context/Needs

The first step is simply to understand your business context. What are the technical
and business challenges faced by your systems engineering and software
development teams? What are their relative priorities? Often times critical business
needs are those faced by most organizations:

 Time to market

 Overall cost to develop product

 Changing product requirements

 Shifting markets

 A drive for improved testing and test automation

 Productivity

 Overall systems quality

Assess Suitability of PI-MDD to Address Top Concerns

Once the organizational challenges/needs have been cataloged, match these with
key strength areas of PI-MDD:

 Flexible and durable software architecture

 A consistent and well-documented development process

 Manage overall problem space complexity

 Ease deployment and manage target environment complexity

 Direct facilitation of development team communication and coordination

 Agile approach with short build/integration cycles

 Strong foundations for software development testing, system integration or
and testing

 Self-optimizing implementation generation for high system performance in
the target environment

If there are one or more priority challenges that can be addressed by PI-MDD, then
move decisively to gain practical experience with the approach and its automation.

Explore PI-MDD with a Pilot Project

Scope out a limited PI-MDD project addressing a limited-scope but real development
effort. Use experts and trained staff, and measure key metrics to build a base of

PI-MDD Executive Summary

Copyright 1995-2014, Pathfinder Solutions LLC, all rights reserved

objective information to decide how to move next. Successful pilots share these
characteristics:

 Modest and clear technical goals, set in a limited time frame

 Explicit and objective evaluation criteria

 Relevant to the overall product context, usually building a small piece of an
actual system

 Staffed with a small team of motivated and capable engineers

 Relevant training and mentoring/guidance from experts

 Use of proper tools/automation

Apply on a Real Project

Quickly after the pilot effort, refine your approach to better address your unique
needs, and apply PI-MDD on a full-scale project. Again mitigate cultural and
technology risks with training and mentoring from industry experts, and apply
proven automation technology.

Like the pilot, clear goals/requirements and success criteria within short, iterative
and incremental builds provides essential focus. Proper training, mentoring/guidance
and tooling are essential for maximizing team productivity and system quality.

Like the pilot, the first "real project" must also have a clear, limited timeframe, and a
focus on harvesting key lessons learned so broader adoption can move quickly and
effectively.

Pivot Your Organizational Culture

Once your first full-scale project effort establishes and adapts PI-MDD to the unique
needs of your organization, leverage your newly earned expertise and new
architectural foundations by rolling these forward via shared components and
product line architecture.

Lessons learned from the pilot and first real project efforts are fed into essential
plans for rolling out PI-MDD throughout the organization where business benefits can
be derived. Making the paradigm shift includes careful planning and sequencing of:

 Product Line Architecture

 Selecting Product Development efforts for PI-MDD

 Team Enablement, including methodology training and mentoring

 Building, managing and deploying common components

Summary

Platform Independent Model Driven Development is a software development method
with supporting automation that can deliver complex and high performance software
systems effectively and with high quality. It also delivers substantial gains in
business results, with newly adopting teams posting substantial gains in critical
business results including time to market, productivity and overall product quality
soon after adoption. For many organizations still producing most of their software

PI-MDD Executive Summary

Copyright 1995-2014, Pathfinder Solutions LLC, all rights reserved

through a less structured hand-coding culture, moving to PI-MDD can be a
substantial paradigm shift, requiring explicitly staged adoption steps facilitated by
training and expert mentoring.

PI-MDD is the most effective way to build complex and high performance software
today.

References

Lahman, HS. Model-Based Development: Applications. Addison-Wesley, 2011.

Raistrick, Chris et al. Model Driven Architecture With Executable UML. Cambridge University Press, 2004.

Douglass, Bruce Powel. Real-Time UML Third Edition: Developing Efficient Objects for Embedded Systems.
Addison-Wesley, 2004.

Fowler, Martin. UML Distilled: A Brief Guide to the Standard Object Modeling Language, Third Edition.
Addison-Wesley, 2003.

Kleppe, Anneke, Jos Warmer, Wim Bast. MDA Explained The Model Driven Architecture: Practice and
Promise. Addison-Wesley, 2003.

Mellor, Stephen J. and Marc J. Balcer. Executable UML: A Foundation for Model-Driven Architecture.
Addison-Wesley, 2002.

Rumbaugh, James, Ivar Jacobson, and Grady Booch. The Unified Modeling Language Reference Manual.
Addison-Wesley, 1999.

Starr, Leon. Executable UML How to Build Class Models. Prentice Hall, 2002.

OMG Systems Modeling Language (OMG SysMLTM) Specification, OMG document ptc/06-05-04, May 4,
2006

Pathfinder Solutions whitepapers (various) , http://www.pathfindersolns.com/resources/whitepapers

