

Index-Based Instance Identification

Version 1.1
December 27, 2006

PathMATE Technical Notes

Pathfinder Solutions LLC
33 Commercial Drive, Suite 2

 Foxboro, MA 02035 USA

www.PathfinderMDA.com
888-662-7284

©2005 by Pathfinder Solutions

Table Of Contents

1. Introduction.. 1

2. Usage .. 1

3. Implementation .. 2
Instance creation .. 2
Class-based finds .. 2
Instance deletion .. 2

4. Implementation Notes .. 3

 ii

Index-based Instance Identification

1. Introduction
Index-based instance identification allows for the efficient retrieval of object
instances from an instance population. Object instances using index-based instance
identification contain an “identifier” attribute - indicated by the IndexID marking -
that uniquely identifies the instance. This marking will result in the generation of an
instance population structure that uses the C++ Standard Template Library
std::map, reducing FIND/WHERE constructs based on the id attribute to map lookup
via std::map::find().

Alternatively when used in conjunction with the MaxIndex class marking, this will
result in the generation of an instance population structure using an array, reducing
FIND/WHERE constructs based on the id attribute to a direct array element access.

The following diagram show how the index-based instance population management
manages the instance table. The class is defined to have an attribute named “ID”
which is marked as the instance identifier. When instances of the class are created,
the value of the “ID” attribute is used to determine the location in the population
table where the instance will reside.

 Instance 0

When PAL FINDs are used to locate an instance using the “ID” attribute in a where
clause, the implementation can perform a rapid index-based retrieval of the object
rather than performing the usual linear table search strategy.

2. Usage
To enable index-based instance identification, one of the class’ attributes must be
marked with the IndexID value set to “TRUE”. Normally, this marking takes place
in the properties.txt file during transformation.
Optionally the class can use the MaxIndex marking to enable array-based instance
management.

Instance 0 ID = 0

…

Instance 1

Instance n
ID = MaxIndex-1 Instance n

Instance
Population

Table

1

Index-based Instance Identification

Transformation-time errors are logged using the Transformation Engine’s
LOG_MESSAGE statement in the following cases:

• More than one attribute is marked with the IndexID marking.
• The attribute marked with the IndexID marking is not typed as an integer.
• An attribute is marked with IndexID but the MaxIndex marking is not

enabled.
At runtime, it is an error to:

• Create an instance whose index is negative or greater than the limits imposed
by the MaxIndex marking.

• Create multiple instances with the same index value.

3. Implementation
Index-based instance identification affects several areas of the design including:

• how instances plug themselves into the instance population set.
• how WHERE clauses are processed when the index attribute is specified in the

clause
• how instances unplug themselves from the instance population

New Mechanism - PfdInstanceMap
For non-array based storage the PfdInstanceMap class is used. This class
encapsulates the usage of the std::map.

Instance creation - array
The instance “plug-in” handling for object instances changes when the
IndexID marking is used. Without the index ID marking, an object instance
is inserted into the first available slot in the table. With the IndexID
marking, the instance is inserted at the offset specified by the value of the
index attribute. If the slot is already occupied, the plug-in code should not
overwrite the existing instance. With the IndexID marking, the instance
table may be sparsely populated. Any iteration over the instance table must
guarantee that empty entries are handled gracefully.

Class-based finds
The generation of class-based finds will be modified to detect cases where the
find operation can be optimized with index-based lookups for the instance
population. Given the case where a find expression’s “WHERE” clause
contains only the IndexID attribute in an equivalence comparison, the
implementation can efficiently retrieve the instance from the table without
having to search the entire population. Additional optimization should be
possible for where clauses that contain the IndexID attribute when used in
conjunction with a logical-and operation.

Instance deletion - array
The instance deletion (“unplug”) handling must clear the object instance from
its slot in the instance table. This must be done without altering the offsets of
any subsequent entries in the instance population.

2

Index-based Instance Identification

4. Implementation Notes
• Assignment to an attribute marked with the IndexID marking is not

supported. This attribute should be treated as a constant and not changed
over the lifetime of the instance.

3

