
©2008 by Pathfinder Solutions

Subsystem Support in UML Essentials

Version 1.1

February 16, 2003

PathMATE Technical Notes

Pathfinder Solutions LLC

33 Commercial Drive, Suite 2

 Foxboro, MA 02035 USA

www.PathfinderMDA.com

888-662-7284

 ii

Table Of Contents

1. Introduction... 1

2. Analysis Conventions ... 1

Domain Membership .. 1

Subsystems .. 1

3. UML Essentials Features .. 1

Phase 1: Repository-Based Domain Membership ... 2

Phase 2: Subsystem comes to Springboard .. 2

Subsystem Support in UML Essentials

1

1. Introduction

This Technical Note describes the capabilities to be deployed in support of

Subsystems in UML Essentials products from Pathfinder Solutions. A Subsystem is a

unit of organization within a domain to contain clusters of classes - primarily to

manage complexity, and without semantic impact on its enclosing domain.

Subsystems are optional, and they can be readily reorganized within a domain

without changing the domain's total content or capabilities.

The term Subsystem has enjoyed a variety of definitions and levels of support in

popular tools. In light of the varied interpretations of subsystems in the past,

present, and the yet-to-be decided future (UML 2.0), UML Essentials will support

very simple subsystem capabilities.

PLEASE NOTE – The field experience of Pathfinder Solutions Consultants and Analysts

has show that subsystems should be used sparingly. If a domain is sufficiently

complex that it requires subdivision into subsystems, then our experience shows that

most of the time the overall system would benefit from a breakup of the large

domain.

2. Analysis Conventions

Domain Membership

UML Essentials currently (version 4.03.003 and earlier) allows only a single

class diagram for a domain, and uses the presence of a class on this diagram

to determine its membership in the domain. While scoping a class to its

domain package was always an MBSE modeling convention, it was not strictly

required. With the recent improvement of package capabilities within our

supported UML editors, this diagram-based domain membership can change.

As a first step in the support of subsystems UML Essentials extract will ignore

all class diagrams when determining the domain ownership of a class, and

simply use package scoping. The domain ownership of a class will be

determined by the root-level package it belongs to. If a class is scoped to a

nested package the nesting will be followed until the root-level package is

found.

In this manner, domain membership will shift from diagram-based to

repository-based.

Subsystems

A Subsystem is a package that contains a subset of the classes in a single

domain, and its primary manifestation is a class diagram showing these

classes. A domain containing subsystems would show them as packages on

the domain's class diagram. A common convention when using subsystems in

a domain is to require that all classes in the domain belong to a subsystem,

and show only subsystem packages on a domain's class diagram.

3. UML Essentials Features

UML Essentials support for subsystems will be deployed in two phases.

Subsystem Support in UML Essentials

2

Phase 1: Repository-Based Domain Membership

In this phase, the editor extract modules will determine the domain ownership

of a class based on root package scoping. Any nested packages will be

ignored, all classes must belong to one root package, and all root packages

containing classes must be domains. A nested (non-root) package can

contain classes, and these must not be domains.

A domain's class diagram can contain anything the analyst wants. Through

proper naming (<domain name>.<subsystem name>), subsystem class

diagrams can be accessed in report generation through the Springboard's

domain.supportDiags field.

The subsystem itself, and any class membership in a subsystem will not be

available through Springboard.

This phase will impact the UML Essentials integration elements, including PAL

file open and extract.

Phase 2: Subsystem comes to Springboard

In this phase the subsystem becomes a recognized analysis element, with

UML Essentials supporting its use in report generation, and optionally is

custom code generation.

Each subsystem can have their own interface class, named “services” defining

a subset of the domain services. Springboard will collect all domain services

from wherever they are defined and present them as a complete set in the

Domain.services field. In addition any services defined within a subsystem

will be added to that subsystem’s Subsystem.services field. The following

rules/capabilities apply:

- A “services” interface class can still be used at the domain level

- A subsystem can define 0 or one “services” interface class

- Each domain service must have a unique name throughout the

domain, regardless of where they are defined.

- All domain services are still considered scoped to the domain (as

opposed to being somehow constrained to any subsystem) regardless

of where they are defined, and their actions may freely access all

domain constituent elements.

In addition, diagram support in Springboard will be extended to support more

flexible report capabilities. Two new Springboard analysis elements will be

added:

Subsystem: supertype: none; subtypes: none
description (String)
classDiagram (Diagram): this subsystem's class diagram
domain (Domain) : The enclosing domain.
langId (String) : name sanitized for use as a C-language identifier
name (String)
objects (ObjectList)
services (DomainServiceList)
subsystem (SubsystemList): any nested subsystems this contains

Subsystem Support in UML Essentials

3

Diagram: supertype: none; subtypes: none
filename (String): the fully qualified filename for diagram for use with the

DIAGRAM directive
name (String): The diagram's name in the host editor

In addition, the following diagram-related fields of existing analysis elements

will be added or updated:

Domain.im (Diagram): this domain's class diagram
Domain.subsystems (SubsystemList): list of subsystems in this domain
Domain.supportDiags (DiagramList): supplemental diagrams, named with

<domain name>.*
Object.std (Diagram): this class's state transition diagram
Object.subsystem (Subsystem): The subsystem this class belongs to.
System.domainChart (Diagram)
System.supportDiags (DiagramList): supplemental diagrams, named with

<system name>.*

These extensions will extend the information available through Springboard to

include these currently unavailable capabilities:

- Generate subsystem membership/containment information in reports

and code comments.

- Create code customizations using subsystem membership/containment

information

- Allow more than one class diagram describing a domain.

- Allow clear identification of support diagrams in a generated report.

- Allow former Shlaer-Mellor users to develop their own templates to

generate subsystem Access, Communication, and Relationship

Reports.

This phase will impact the following UML Essentials product elements:

- editor integration elements, including extract and the XML emitter

- Springboard

- report templates

- C++, C, and Java code templates (just comments to indicate

subsystem membership)

