
©2008 by Pathfinder Solutions 

 

 
 

 

 

 

 

Spotlight Test Driver File 

Version 1.3 

April 05, 2005 

 

 

 

PathMATE Technical Notes 

 

 

Pathfinder Solutions LLC 

33 Commercial Drive, Suite 2 

 Foxboro, MA 02035 USA 

www.PathfinderMDA.com 

888-662-7284



 

 ii

 

Table Of Contents 

1. Introduction........................................................................................... 1 

2. Test Driver Structure ............................................................................. 1 

Header ..................................................................................................... 1 

Processes ................................................................................................. 1 

Test Script................................................................................................ 2 

3. Test Commands ..................................................................................... 2 

Test Script Commands ............................................................................... 3 

Control Point Statements ........................................................................... 5 

Synchronization Statements ....................................................................... 6 

4. Legacy Driver Commands ....................................................................... 7 

Appendix A ................................................................................................... 8 



Spotlight Test Driver File  
 

 

 

 

1 

 

 

1. Introduction 

The Spotlight Test Driver file (.stdf) is a structured extension to the Spotlight 

driver file (.usd). The Test Driver file format defines new commands that support 

using Spotlight as an automated testing tool. 

The Test Driver file is defined using the international standard XML. The schema 

supports testing over multiple target tasks as well as a structured command 

format. 

Spotlight will continue to support the loading of .usd files until further notice. The 

test command extensions will only be supported in the .stdf format. Files with 

extensions of both .usd or .stdf will be associated with Spotlight.exe for the 

purpose of automatically starting the Spotlight application. 

The reader to refer to Technical Note: PathMATE Spotlight User Interface for 

additional information. 

2. Test Driver Structure 

1.1. Header 

1.1.1. Version number 
1.1.2. System Name 

1.2. Processes 

1.2.1. Executable (optional) 
1.2.2. IP address (optional) 
1.2.3. Task 

1.2.3.1. Task identifier 

1.2.3.2. Port number 

1.2.3.3. Break directives (optional) 

1.2.3.4. Trace directives (optional) 

1.2.3.5. Animation directives (optional) 

1.3. Test Script 

1.3.1. Commands 

Header 

The Header (2.1) contains the version and system information. It also 

contains the location of the model file.   

 

Example 
 

<spotlightDriver xmlns:xsi="http://www.w3.org/2001/ XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="http://www.Pathfinde rMDA/spotlightDriver.xsd" 
name="chaseDC" version="5.01.002" modelFile=”../../ analysis/chaseDC.mdl”> 

 

Processes 

 

The Processes (2.2) section defines the tasks under test. If the test 

application is local it can be invoked by supplying an executable (2.2.1) in the 



Spotlight Test Driver File  
 

 

 

 

2 

 

 

filename attribute. Local executables will be startup up and connected to 

automatically.   

 

If the executable is on a remote machine, the IP address or machine name 

can be supplied in the machine attribute.  Remote processes must be started 

outside of Spotlight, and before the driver file is loaded.  Connection to the 

remote processes occurs when the driver file is loaded.  Multiple processes 

can be specified, each with their own identifier, to support distributed 

deployment.   

 

Processes made up of one or more tasks.  An identifier is supplied for each 

task, this identifier will be used in the command section to route directives to 

the proper task. Each task has its own port number to support its connection 

to Spotlight.  Break (2.2.2.3) and Trace (2.2.2.4) directives may be specified 

to pre-load breakpoints and trace control to a task. 

 

Examples 
 

<process filename=".\project\bin\chaseDC.exe" id="l ocalTask"> 

    <task name="SYS_TASK_ID_MAIN" port="5150" > 

    </task> 

    <task name="SYS_TASK_ID_TREE" port="5151" > 

    </task> 

</process> 

<process machine="127.0.0.1" id="remoteTask"> 

    <task name="SYS_TASK_ID_MAIN" port="5150" > 

    </task> 

</process> 

 

Test Script 

 

The Test (2.3) section contains a test name and a sequence of test 

commands. The section is defined below.  There is only one script section per 

driver file.  The script section is optional.  It can be used to define and run 

tests in batch mode, or to initialize the system into a particular state to start 

a debugging session.   

 

The script commands are enclosed within the XML script tags.  Script 

commands are executed sequentially within the command block.   

 
<script> 

  <!—Commands here --> 

</script> 

Scrip commands and syntax are defined in the next section.   

 

3. Test Commands 



Spotlight Test Driver File  
 

 

 

 

3 

 

 

Two types of command structures are defined. A command directive defines a 

single action e.g. go, pause or writelog. A command block defines a set of 

command directives that are executed when a task state occurs e.g. On Break. 

Command names will be case sensitive. 

• Executable – defines a local executable file to be started. 

• IPAddress – causes a connection to a task at the specified address. 

• Break – sets a breakpoint for a task. 

• Trace – sets a trace point for a task. 

Test directives are specified with the pattern <cmd cmd=directive, 

args></cmd> where directive is one of the command directive listed below and 

args represents any arguments required for the directive.  

References to model elements can be either by name or by unique id.  

Commands that require model element references provide the attributes  to 

specify the elements by name, and also a uuid attribute to specify the Universal 

Unique Identifier given to the element by the UML editor.  The UUID simplifies 

rename processing, while the element names provide human readable 

references.   

Test Script Commands 

1. cmd=setTask – specified the active task. Subsequent commands are directed 
to that task. 

The task must be specified using the process and task attributes.  If the task 

does not exist, an error is generated.   

<cmd cmd="setTask" process="localTask” task=”SYS_TA SK_ID_MAIN”/> 

 

2. cmd=go – begins processing on the active task. 

 <cmd cmd="go" /> 

 

3. cmd=pause – pauses execution of the active task. Allows stimulus to be 
injected or data about the state of the system under test to be collected in 

subsequent test script commands. 

 <cmd cmd="pause" /> 

 

 

4. cmd=delay – pauses the test driver for a number of milliseconds before 
executing the next command.  The application mode is unchanged, and may 

be running or paused, depending on previous commands.   

 

 <cmd cmd="delay" msec="1000" /> 

5. cmd=writelog – writes a string to the log. Useful for debugging and tracing 
test driver and system under test interaction. 



Spotlight Test Driver File  
 

 

 

 

4 

 

 

The message attribute specifies the contents of the message to be placed in 

the file.   

 <cmd cmd="writelog" message="starting test" /> 

 

6. cmd=openfile – sets the log file of the test case. File will always be opened in 
APPEND mode, and create if it does not exist.  Full and relative pathnames to 

the log file will be supported. 

 <cmd cmd="openfile" filename="chaseDCLog.log" /> 

 

7. cmd=closefile – closes the log file of the test case. 

 <cmd cmd="closefile" filename="chaseDCLog" /> 

 

8. cmd=reset – resets the task by deleting all instances and clearing the event 
queue. Processing can then begin fresh at initialization. This only effects 

models and does not reset the state of any realized domains. 

 <cmd cmd="reset" /> 

 

9. cmd=invoke – invokes a domain operation, passing the input parameters to 
the active task. The return value and output parameters will be stored in the 

log file, but are not available to the test driver as part of this release. 

The domain operation may be specified using the domain name and operation 

name, or by using the uuid attribute.  Parameter values are specified using 

the property XML elements within the command scope.  uuid is also 

supported for parameters.   

 <cmd cmd="invoke" domain="EV" operation="Init" uui d="" > 

   <property name="arg1" value="val" uuid="" /> 

 </cmd> 

10. cmd=dumpPopulation – Dumps information about the system under test to a 
file.  How much information is stored depends on the scope parameter.   

� System dumps all instance, association, and event queue data 

� Domain dumps all instance data for a domain 

� Class dumps all the instances of a class 

� Event queue only dumps the event queue 

Dumps will be stored in an XML file and will be able to be loaded 

using the Load Population command. Each instance will have a 

unique identifier given to it by software mechanisms.  This identifier 

can be used to refer to other instances in the dump, such as across 

associations.  The unique ID is in addition to any attributes marked 

with the “Identifier” property. 

The name attribute is the fully qualified name of the class, specified 

by the Engine User’s Guide, e.g., system.domain.class. 



Spotlight Test Driver File  
 

 

 

 

5 

 

 

 <cmd cmd="dumpPopulation" scope="system"  name=”” 
filename="chaseDCPopulation.xml" /> 

 

11. cmd=loadPopulation – Reads in an XML file containing the initial population of 
a test case.  Class instances, associations, and events are created in the 

system under test.  The file can be created manually or by using the Dump 

Population command from a previous test case.  This feature is very useful for 

setting up the initial conditions of the test case, especially error conditions. 

 <cmd cmd="loadPopulation" filename="chaseDCPopulat ion.xml" /> 

 

12. cmd=generateEvent – Generates an event to the specified instance, passing 
along the specified event parameters.   

The name attribute is the fully qualified name of the event, specified by the 

Engine User’s Guide, system.domain.class.event.  The destination is the 

destination instance identifier for the event.  Only objects from loaded 

instance populations can be specified here.  Event parameter values are 

specified using the property XML elements within the command scope.  uuid 

is supported for the event and its parameters. 

 <cmd cmd="generateEvent" name="chaseDC.EV.Dog.Woof " destination=”Dog1” 
uuid=”” /> 

   <property name="arg1" value="val" uuid="" /> 

 </cmd> 

 

13. cmd= openSeqChart  – Instructs Spotlight to create a sequence chart based on 

the interactions in the test case.  The name of the sequence chart will be 

named using the name attribute and located in the model under the “Logical 

View”.   Note that if the script is executed multiple times, multiple diagrams 

with the same name will be created.   

 <cmd cmd="openSeqChart" name="seqChartName"/> 

 

14. cmd=closeSeqChart – stops sending trace information to the sequence chart 
in the UML editor.   

 <cmd cmd="closeSeqChart" /> 

 

15. cmd=initialize - Invokes the system or a domain’s initialization code.  

The scope attribute determines which initialization code is run, system or 

domain.  For the domain scope, the domain is set through the domain or uuid 

attributes.   

 <cmd cmd="initialize" scope="domain" domain="EV" u uid="" /> 

 

 

Control Point Statements 



Spotlight Test Driver File  
 

 

 

 

6 

 

 

Break and trace points are defined as control points, or just points within the 

test driver syntax.  Breakpoints can be set under the task elements for 

initialization of breakpoints for an interactive Spotlight session, or within the 

script section to manage the control flow of the system under test.   

Syntax for control point statements uses the XML point element.  The break 

and trace attributes are booleans that determine if the point is a breakpoint 

or tracepoint, respectively, if true.   

The category defines the type of model element the control point applies to.  

It is an enumeration of  

• class 

• event 

• service 

• association 

• pal 

The type is specific to the category, given by the table 1. 

Category Applicable Types
class create, delete, send, receive, transition, animation
event cancel, receive, send
service invoke
association link, unlink
pal statement  

Table 1.  Breakpoint Types by Category 

The element attribute refers to the model element by its fully qualified name, 

as defined in the Engine Users Guide.  The uuid is also used, to support 

rename within the driver file.   

Break and trace points are supported within the <script> section of the driver 

file.  A script section can be located under a task definition, primarily for 

setting task specific breakpoints.   

Example control point statement. 

      <point break="true" trace="false" category="e vent" type="cancel" 
element="chaseDC.Dog.Woof" uuid="" /> 

 

Synchronization Statements 

Control is synchronized between the application and the test driver through 

breakpoints or when the system goes idle.  These conditions are detected by 

the application and sent to Spotlight and the test script.  When detected, the 

application is paused and control returns to the test script for continued 

processing. Synchronization statement, onbreak and onidle, are the points at 

which the test driver waits for the models to reach that state, thus, 

synchronizing the test script with the executing model.  These statements can 

contain commands within the block, but since all commands within the script 

section are executed sequentially, the commands can also be located after 

the synchronization statements.   



Spotlight Test Driver File  
 

 

 

 

7 

 

 

The idle condition is detected by the application when all events are 

processed and no other inputs can come in.  In multi-task and multi-process 

modes, inputs may come in from other tasks, so idle mode is only applicable 

in single-task, single process deployment, and mainly for domain-level 

dynamic verification.   

1. onbreak – the test driver will be notified of breakpoints triggered in the 
system under test. Execution is paused in the application until the go 

command is executed.  The onbreak statement can contain commands within 

it.   

 <onbreak > 

   <cmd /> 

   <point break="false" trace="false" category="cla ss" type="transition" 
element="chaseDC.Dog" uuid="" /> 

 </onbreak> 

 

 

2. onidle – triggered when the main event loop determines there is nothing left 
to do until an external event comes in. This will not be triggered if there are 

periodic services registered or if the system under test is multi-task or multi-

process.  The onidle statement can contain commands within it.   

 <!-- wait for idle condition before proceeding -->  

 <onidle > 

   <cmd /> 

   <cmd cmd="dumpPopulation" scope="system | domain  | class | events"  
filename="chaseDCPopulation.xml" /> 

 </onidle> 

 

 

4. Legacy Driver Commands 

The following commands are supported for the Spotlight driver file (.usd) format.  

Driver files in both formats will be supported on load, but saving will only support 

the new format.   

• EXECUTABLE <executable_file_name> 

• CONNECT 

• BREAK <category> <object_name> <type> 

• TRACE <category> <object_name> <type> 

• DUMP  

• GO 

• INVOKE 



Spotlight Test Driver File  
 

 

 

 

8 

 

 

Appendix A 

The following file shows a sample test driver file for the chaseDC test case, with 

multiple processors and multiple tasks. 

<?xml version="1.0" encoding="UTF-8"?> 

<!-- Driver file for PathMATE Spotlight (http://www .pathmate.com)--> 

<spotlightDriver xmlns:xsi="http://www.w3.org/2001/ XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="http://www.Pathfinde rMDA/spotlightDriver.xsd" 
name="chaseDC" modelFile=”..\analysis\chaseDC.mdl” version="5.01.002" > 

 

  <process filename=".\project\bin\chaseDC.exe" id= "localTask"> 

    <task name="SYS_TASK_ID_MAIN" port="5150" > 

      <script> 

    <!-- not supported yet - class breakpoints can also apply to instances --> 

  <point break="true" trace="false" category="class " type="create" 
element="chaseDC.Dog" uuid="" /> 

  <point break="true" trace="false" category="class " type="delete" 
element="chaseDC.Dog" uuid="" /> 

  <point break="true" trace="false" category="class " type="send" 
element="chaseDC.Dog" uuid="" /> 

  <point break="true" trace="false" category="class " type="receive" 
element="chaseDC.Dog" uuid="" /> 

  <point break="true" trace="false" category="class " type="transition" 
element="chaseDC.Dog" uuid="" /> 

  <point break="true" trace="false" category="class " type="animation" 
element="chaseDC.Dog" uuid="" /> 

 

     <!-- not supported yet - service invocation on  the class --> 

  <point break="true" trace="false" category="class " type="invoke" 
element="chaseDC.Dog.eatFood" uuid="" /> 

   </script> 

    </task> 

   <task name="SYS_TASK_ID_TREE" port="5151" > 

       <script> 

      <point break="true" trace="false" category="e vent" type="cancel" 
element="chaseDC.Dog.Woof" uuid="" /> 

   <point break="true" trace="false" category="even t" type="receive" 
element="chaseDC.Dog.Woof" uuid="" /> 

   <point break="true" trace="false" category="even t" type="send" 
element="chaseDC.Dog.Woof" uuid="" /> 

    </script> 

    </task> 

 </process> 

  <process machine="127.0.0.1" id="remoteTask"> 

    <task name="SYS_TASK_ID_MAIN" port="5150" > 

       <script> 



Spotlight Test Driver File  
 

 

 

 

9 

 

 

      <point break="true" trace="false" category="s ervice" type="invoke" 
element="chaseDC.Init" uuid="" /> 

   <point break="true" trace="false" category="asso ciation" type="link" 
element="chaseDC.A1" uuid="" /> 

   <point break="true" trace="false" category="asso ciation" type="unlink" 
element="chaseDC.A1" uuid="" /> 

    </script> 

    </task> 

    <task name="SYS_TASK_ID_TREE" port="5151" > 

       <script> 

      <!-- Action language lines --> 

      <point break="true" trace="false" category="p al" type="statement" 
filename="[action_file]" line="[stmt.lineNumber]" / > 

    </script> 

    </task> 

  </process> 

 

  <!--  

  Breakpoints can also be used within the script se ction to enable and disable 
breakpoints on the fly 

  --> 

  <script> 

    <cmd cmd="setTask" process="localTask” task=”SY S_TASK_ID_MAIN"/> 

 <cmd cmd="go" /> 

 <cmd cmd="pause" /> 

 <cmd cmd="delay" msec="1000" /> 

 <cmd cmd="openfile" filename="chaseDCLog.log" /> 

 <cmd cmd="writelog" message="starting test" /> 

 <cmd cmd="closefile" filename="chaseDCLog" /> 

 <cmd cmd="reset" /> 

 

 <!-- open under LogicalView --> 

 <cmd cmd="openSeqChart" name="seqChartName"/> 

 <cmd cmd="closeSeqChart" /> 

 

 <cmd cmd="invoke" domain="EV" operation="Init" uui d="" > 

   <property name="arg1" value="val" uuid="" /> 

 </cmd> 

 

 <!-- not supported yet --> 

 <cmd cmd="initialize" scope="domain | system" doma in=" EV" uuid="" /> 

 

 <!-- not supported yet without a way to identify a  destination --> 

 <cmd cmd="generate" event="chaseDC.EV.Dog.Woof" de stination="" > 



Spotlight Test Driver File  
 

 

 

 

10 

 

 

   <property name="arg1" value="val" uuid="" /> 

 </cmd>  

 

 <cmd cmd="loadPopulation" filename="chaseDCPopulat ion.xml" /> 

 <cmd cmd="dumpPopulation" scope="system | domain |  class | events"  
filename="chaseDCPopulation.xml" /> 

 

 <!-- wait for idle condition before proceeding.  N o indication here the source of 
the breakpoint --> 

 <onbreak > 

   <cmd /> 

   <point break="false" trace="false" category="cla ss" type="transition" 
element="chaseDC.Dog" uuid="" /> 

 </onbreak> 

 

 <!-- wait for idle condition before proceeding -->  

 <onidle > 

   <cmd /> 

   <cmd cmd="dumpPopulation" scope="system | domain  | class | events"  
filename="chaseDCPopulation.xml" /> 

 </onidle> 

  </script> 

</spotlightDriver> 



Spotlight Test Driver File  
 

 

 

 

11 

 

 

 

This example shows how to initialize, test, and collect results for a single process, 

single task deployment.   

<?xml version="1.0" encoding="UTF-8"?> 



Spotlight Test Driver File  
 

 

 

 

12 

 

 

Sample Instance Population 

<?xml version="1.0" encoding="UTF-8"?> 

<!-- Instance report generated by PathMATE Spotlight 

(http://www.pathmate.com)--> 

<system xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xsi:noNamespaceSchemaLocation="http://www.PathfinderMDA/idp.xsd" 

name="chaseDC_SYS_TASK_ID_MAIN"> 

 <population> 

  <package name="Events"> 

   <object class="Cat" id="00940F40" state="Safe" > 

    <property name="Name" value="Fluffy" /> 

    <link name="A1" role="" to="00940E48"/> 

   </object> 

   <object class="Dog" id="00940E48" state="Resting" > 

    <property name="CatsChased" value="1" /> 

    <property name="Name" value="Fido" /> 

    <link name="A1" role="" to="00940F40"/> 

   </object> 

  </package> 

 </population> 

</system> 

 

 


