
Copyright 1995-2009 by Pathfinder Solutions LLC

Non-Transient Incident Handles in C

Version 1.2

December 31, 2008

PathMATE Technical Notes

Pathfinder Solutions
33 Commercial Drive, Suite 2

 Foxboro, MA 02035 USA

www.PathfinderMDA.com
+1 508-568-0068

 ii

Table Of Contents

1. Introduction.. 1

2. Usage .. 1

3. Implementation .. 1
Mechanisms ... 1
Templates.. 2

4. Implementation Notes .. 2

Nontransient Incident Handles in C

1

1. Introduction

In the PathMATE C Map, incident handle (service handle) delivery is accomplished by
doing a deep copy of the service handle structure, including data container
parameters, dispatching the service handle for handling, then deleting the copy. The
creation, population and deallocation of these transient copies are materially
inefficient when the service handle is called very frequently, such as with recurring
signals or periodic services. The Nontransient Incident Handle feature provides a
way to avoid this copy-on-send overhead.

It has been observed that frequently used service handles are stored as attributes of
a class. To reduce the overhead of processing these service handles, the attribute
holding the service handle can be marked with a NonTransient property, set to T or
F. When set to T, the service handle will be dispatched directly, and not copied and
deleted.

Only attributes can be marked as containing non-transient service handles. Periodic
services and local variables containing service handles will not be optimized.

2. Usage

A service handle may be marked NonTransient by marking the attribute to hold the
non-transient service handle.

Use the properties.txt file to mark the service model element. For example:

Non-transient marking for a frequently used service handle
Attribute,System.Domain.className.attrName,NonTransient,T

These non-transient services handles are then invoked directly, rather than through
the default implementation that creates a copy for dispatch. The service handle is
cleaned up (deleted) when an object containing the service handle as an attribute is
deleted.

As a side effect of this feature, parameter values passed to service handles are
"sticky". Parameters set for one call would still be set on the next,
even if not set then.

3. Implementation

This feature is implemented by modifying the SW_Incident_deallocate() function and
not truly deleting it if the handle type is SW_NONTRANSIENT_SERVICE_HANDLE.
Dispatching code also checks this type to determine if a copy should be sent or the
original.

Non-transient service handles require a number of changes to templates and
mechanisms to support.

Mechanisms

Files associated with SW_Incident and SW_Task have been changed to support a
new non transient type as the SW_Incident type,

Nontransient Incident Handles in C

2

SW_NONTRANSIENT_SERVICE_HANDLE. Management of this type, proper creation,
deletion, and dispatching is implemented here.

Templates

Templates to check the NonTransient property on creating and dispatching the
service handle are updated. Templates implementing the class destructor are
updated to handle cleaning up these service handles, as well as attribute
assignments.

4. Implementation Notes

A more general approach than what is specified in this document was tried –
essentially allowing incident handles of any form (not just attributes) to be marked
as non-transient - and numerous complication and inefficiencies developed. The
current approach was selected because of the commonality of the pattern, and for its
simplicity.

Files changed – mechanisms:

 sw_incident.c/h

 sw_pool_block.c

 sw_task.c/h

Files changed – templates:
 act_stmt_assignment.arc

 act_stmt_invoke_sh.arc

 obj_create_guts.arc

 obj_ctor.arc

