

Mapping Platform Independent
Models to Entity Java Beans 3.0

 Carolyn Duby

Version 1.10
April 22, 2009

Pathfinder Solutions LLC
33 Commercial Street, Suite 2

 Foxboro, MA 02035 USA

www.PathfinderMDA.com
888-662-7284

 ii

Table Of Contents

1. Introduction.. 4

2. Target Document Set .. 4

3. PIM to EJB 3.0 Mapping Rules ... 4
Classes.. 4
Attributes... 4
Temporal Data Types... 6
Enumerated Types .. 6
Binary Associations ... 6
Inheritance Relationships ..18
Behavior ...19

4. Deployment... 26
Specifying the Data Source..26
JNDI Names for Session Beans...26
Table Name Length Checking ...26

5. Design Decisions ... 27
Annotations vs. XML Deployment Descriptor ..27
Representing Composite Primary Keys ..27
Multitable Mappings..27
Collection Types for Many Associations ..27
FIFO and LIFO Instance Ordering..27
Cascading ...28
Inheritance Strategy...28
Association Classes ..28

6. Markings ... 28
System...28
Domain ..29
Domain Service ...30
Class ..31
Attribute ...31
Participant ..32

 iii

Association..33
User Defined Type..33

7. Annotation to Marking Index .. 33

8. Model Restrictions... 34

9. References .. 35

10. Appendix... 35
How to Specify Stereotypes for Model Elements..35

Mapping Platform Independent Models to EJB 3.0

4

1. Introduction

This document describes how to translate Platform Independent
Models into Entity Java Beans (EJB) 3.0. It describes the design
patterns and markings used by the transformation.

2. Target Document Set

The EJB Transformation Map will generate annotated Java and the
persistence.xml deployment descriptor.

3. PIM to EJB 3.0 Mapping Rules

This section describes mapping rules that will be added to the
PathMATE Java Transformation Map to support EJB 3.0.

Classes

Classes with the EjbEntityBean marking equal to "T" map to Entity
Beans. Entity Beans will implement the java.io.Serializable interface.
Because the entire population of entity beans is stored in the
database, the entity bean does not need an instance list.

EJB divides logic from data. Logic is contained in a session bean and
data is stored in an entity bean. This is contrary to OO modeling which
combines logic and data into the same class abstraction. For each
class in the PIM marked as an entity bean, the transformation rules
will create two classes. A class called <class_name>Logic to handle
the operations and one called <class_name> which is the entity bean
itself. We use a plain java class for the Logic class since it is not used
outside the domain. The entity bean itself will contain only the data
for the class. The operations and state actions will be in the Logic
class.

An optional EjbTable marking allows the user to specify the table
where the entity will be stored.

Some databases such as Oracle restrict the length of table names.
Class names generated from the default EJB persistence mappings are
often too long. If the table is not specified, the table name will be set
to EjbTablePrefix property for the domain followed by an underscore
followed by the identifier of the class.

Classes with EjbEntityBean marking equal to "F" will have the default
Java mappings.

Attributes

Attributes will map to private data of the class.

For entity beans, a get and set methods will be generated for each
attribute. The get and methods will be annotated with the Column
annotation if the EjbColumn marking is set on the attribute.

Mapping Platform Independent Models to EJB 3.0

5

If an entity bean attribute has the <<Identifier>> stereotype applied,
the Id annotation will be inserted before the get and set methods. For
more information on how to specify a stereotype see How to Specify
Stereotypes for Model Elements on page 35. The
EjbIdGenerationStrategy marking determines if an identifier is
automatically generated. The strategy may be either AUTO,
IDENTITY, TABLE or SEQUENCE. If the strategy is AUTO, the
persistence provider will generate a unique identifier automatically. If
the strategy is IDENTIFIER, a special identifier column type will be
used.

If the strategy is TABLE, the EjbIdGeneratorProperties marking
specifies the properties of the TableGenerator annotation excluding the
name. The templates will construct the annotation as follows:

@TableGenerator(name="<class_name>_GENERATOR"
<EjbIdGeneratorProperties marking>)

If the strategy is SEQUENCE, the EjbIdGeneratorProperties marking
specifies the properties of the SequenceGenerator annotation
excluding the name. The templates will construct the annotation as
follows:

@SequenceGenerator(name="<class_name>_GENERATOR"
<EjbIdGeneratorProperties marking>)

If the class has compound identifiers, a primary key class is generated.
The primary key class is called <class_name>PK. It implements the
Serializable interface, has a public no argument constructor, and has
fields to represent each attribute in the compound identifier. Get and
set methods are provided for each of the identifier attributes. The
equals and hashCode methods are implemented. The IdClass
annotation is added to the entity bean.

If the class has no identifier attribute, an integer attribute named
generatedId will be added to the entity bean with an automatically
generated value. To use the sequences for automatically generated
identifiers, set the system property EjbGenSequenceGenerators to T.
A GeneratedValue and SequenceGenerator annotation are added to
the generated identifier annotations as follows:

@Id
 @GeneratedValue(strategy = GenerationType.SEQUENCE,
 generator = "SQ_<class_table_name>")

@SequenceGenerator(name = "SQ_<class_table_name>",

sequenceName = "SQ_<class_table_name>",
initialValue = 1, allocationSize = 1)

public int getGeneratedId() { return generatedId; }
public void setGeneratedId(int generatedId)

{ this.generatedId = generatedId; }

Generate the file generate_sequences.sql containing the SQL to create
the sequences.

Mapping Platform Independent Models to EJB 3.0

6

If an attribute is marked with EjbTransient = T, the Transient
annotation will be applied to the attribute's get and set methods.

Entity beans that have state models will have an implicit currentState
attribute to persist the current state of the bean.

Temporal Data Types

New system level user defined primitive types represent time stored in
entity beans:

sys_date_t

sys_time_t

sys_timestamp_t

All of these types will map to the java.util.Calendar type. Each one
will have a different @Temporal annotation that affects the data type
used to store the attribute in the database.

User Defined Type Temporal Annotation

sys_date_t @Temporal(TemporalType.DATE)

sys_time_t @Temporal(TemporalType.TIME)

sys_timestamp_t @Temporal(TemporalType.TIMESTAMP)

Enumerated Types

Previously the java map generated integer constants for enumerated
types because enumerated types were not available in Java.
Enumerated types are now mapped to java enums. The enums will
use the default @Enumerated(EnumType.ORDINAL) mapping.

Binary Associations

Binary associations will be represented in entity beans by using the
OneToOne, OneToMany, ManyToOne, and ManyToMany annotations.
The action language will be analyzed to determine if the association is
bidirectional or unidirectional.

For all the examples assume the classes are in the Purchasing domain.

One to One Unidirectional Association

A one to one unidirectional association creates an attribute to
formalize the relationship and set and get methods for the reference
on one side of the association.

In this example the A1 association is navigated only from Customer to
Address in the action language. The Customer entity formalizes the
association but the Address class does not.

Mapping Platform Independent Models to EJB 3.0

7

@Entity

public class Purchasing_Customer implements
java.io.Serializable {

 private Purchasing_Address acrossA1_to_address;

 @OneToOne

 public Purchasing_Address getAcrossA1_to_address() {

 return acrossA1_to_address;

 }

 public void setAcrossA1_to_address(

Purchasing_Address other_side) {

 acrossA1_to_address = other_side;

 }

}

@Entity

Public class Purchasing_Address implements

Java.io.Serializable {

}

One to One Bidirectional Association

A one to one unidirectional association creates an attribute to
formalize the relationship and set and get methods for the reference
on both sides of the association.

In this example the A2 association is navigated in both directions in
the action language. The Customer entity and the CreditCard classes
both formalize the association. The mappedBy property specifies that
the acrossA2_to_creditcard and acrossA2_to_customer fields formalize
opposite sides of the association.

The one to one association could be formalized in either the Customer
or the Credit Card class. The transformation rules will pick the class
where the EjbJoinColumn marking is specified. If no join column is
specified and there is one conditional participant and one unconditional
participant, the participant with the unconditional multiplicity will be
chosen. For example, the Credit Card always has a Customer, but the
Customer does not always have a CreditCard. If none of these rules

Mapping Platform Independent Models to EJB 3.0

8

apply, i.e. both sides are unconditional or conditional, the first
participant will be chosen.

@Entity

public class Purchasing_Customer implements

 java.io.Serializable

{

 private Purchasing_CreditCard acrossA2_to_creditcard;

 @OneToOne

 public Purchasing_CreditCard

 getAcrossA2_to_creditcard()

{

 return acrossA2_to_creditcard;

 }

 public void setAcrossA2_to_creditcard(

Purchasing_CreditCard other_side)

{

 acrossA2_to_creditcard = other_side;

 }

}

@Entity

public class Purchasing_CreditCard implements

Java.io.Serializable

{

 private Purchasing_Customer acrossA2_to_customer;

 @OneToOne(mappedBy="acrossA2_to_creditcard")

 public Purchasing_Customer getAcrossA2_to_customer()

 {

 return acrossA2_to_customer;

Mapping Platform Independent Models to EJB 3.0

9

 }

public void setAcrossA2_to_customer(

Purchasing_Customer other_side)

 {

 acrossA2_to_customer = other_side;

 }

}

One to Many Unidirectional Association

If there is a 1 to * association between two classes and the association
is only traversed from the 1 side to the * side, the OneToMany
annotation is generated.

@Entity

public class Purchasing_Customer implements

 java.io.Serializable

{

 private Set<Purchasing_Phone>

acrossA3_to_phone;

 @OneToMany

 public Set<Purchasing_Phone>

 getAcrossA3_to_phone()

{

 return acrossA3_to_phone;

 }

 public void setAcrossA3_to_phone(

Set<Purchasing_CreditCard> other_side)

{

 acrossA3_to_phone = other_side;

 }

}

Mapping Platform Independent Models to EJB 3.0

10

Many To One Unidirectional Association

If there is a 1 to * association between two classes and the association
is only traversed from the * side to the 1 side, the ManyToOne
annotation is generated.

@Entity

public class Purchasing_Destination implements

 Java.io.serializable

{

 private Purchasing_ShippingRate

acrossA4_to_shippingrate;

 @ManyToOne

 public Purchasing_ShippingRate

 getAcrossA4_to_shippingrate()

{

 return acrossA4_to_shippingrate;

 }

 public void setAcrossA4_to_shippingrate(

Purchasing_ShippingRate other_side)

{

 acrossA4_to_shippingrate = other_side;

 }

}

@Entity

public class Purchasing_ShippingRate implements

 java.io.Serializable

{

}

Mapping Platform Independent Models to EJB 3.0

11

One to Many Bidirectional Association

When there is a 1 to * association and it is traversed in both directions
in action language, the OneToMany and ManyToOne annotations are
inserted. The OneToMany side specifies the mappedBy property.

@Entity

public Purchasing_Customer implements java.io.Serializable

{

private Set<Purchasing_Reservation>

acrossA5_to_reservation;

 @OneToMany(mappedBy="acrossA5_to_customer")

 public Set<Purchasing_Reservation>

 getAcrossA5_to_reservation()

 {

 return acrossA5_to_customer;

 }

 public void setAcrossA5_to_reservation(

Set<Purchasing_Reservation> other_side)

 {

 acrossA5_to_reservation = other_side;

 }

}

@Entity

public Purchasing_Reservation implements
java.io.Serializable

{

private Purchasing_Customer

acrossA5_to_customer;

 @ManyToOne

 public Purchasing_Customer getAcrossA5_to_customer()

Mapping Platform Independent Models to EJB 3.0

12

 {

 return acrossA5_to_customer;

 }

 public void setAcrossA5_to_customer(

Purchasing_Customer other_side)

 {

 acrossA5_to_customer = other_side;

 }

}

Many to Many Unidirectional Association

When a * to * association is navigated in one direction only, the
ManyToMany annotation is generated.

public class Purchasing_Customer implements

 java.io.Serializable

{

private Set<Purchasing_Store>

acrossA6_to_store;

 @ManyToMany

 public Set< Purchasing_Store >

 getAcrossA6_to_store()

 {

 return acrossA6_to_store;

 }

 public void setAcrossA6_to_store(

Set<Purchasing_Store> other_side)

 {

 acrossA6_to_store = other_side;

 }

}

Mapping Platform Independent Models to EJB 3.0

13

Many to Many Bidirectional Association

When a * to * association is navigated in both directions, the
ManyToMany annotation is generated in both participating classes.
The first participant in the association will define the relationship
including any specified JoinTables. The second participant will specify
the mappedBy property of the ManyToMany annotation.

@Entity

public class Purchasing_Customer implements

 java.io.Serializable

{

private Set<Purchasing_Store>

acrossA6_to_store;

 @ManyToMany

 public Set< Purchasing_Store >

 getAcrossA6_to_store()

 {

 return acrossA6_to_store;

 }

 public void setAcrossA6_to_store(

Set<Purchasing_Store> other_side)

 {

 acrossA6_to_store = other_side;

 }

}

@Entity

public class Purchasing_Store implements

 java.io.Serializable

{

private Set<Purchasing_Customer>

acrossA6_to_customer;

Mapping Platform Independent Models to EJB 3.0

14

 @ManyToMany(mappedBy="acrossA6_to_store")

 public Set< Purchasing_Customer >

 getAcrossA6_to_customer()

 {

 return acrossA6_to_customer;

 }

 public void setAcrossA6_to_customer(

Set<Purchasing_Customer> other_side)

 {

 acrossA6_to_customer = other_side;

 }

}

Join Columns

You can specify the column used to join the relationship using the
EjbJoinColumn marking on the participant. For example suppose in
the unidirectional association example we wanted to specify the name
of the column used to join the A1 association.

NOTE: Only one participant in the association should specify the
EjbJoinColumn marking.

Attach the EjbJoinColumn to the address participant by adding the
following to the properties.txt file:

Participant,CustomerRelations.Purchasing.A1.Address.address,EJBJoinColumn,ADDRESS_ID

The Customer entity includes the JoinColumn annotation:

@Entity

public class Purchasing_Customer implements
java.io.Serializable {

 private Purchasing_Address acrossA1_to_address;

 @OneToOne

 @JoinColumn(name="ADDRESS_ID")

 public Purchasing_Address getAcrossA1_to_address() {

 return acrossA1_to_address;

 }

Mapping Platform Independent Models to EJB 3.0

15

 public void setAcrossA1_to_address(

Purchasing_Address other_side) {

 acrossA1_to_address = other_side;

 }

}

Primary Key Joins

If the two primary keys of the related entity are identical no extra
columns are required to implement the association. Specify the
EjbPrimaryKeyJoinColumn marking to T to add the
@PrimaryKeyJoinColumn annotation.

@Entity

public class Purchasing_Customer implements
java.io.Serializable {

 private Purchasing_Address acrossA1_to_address;

 @OneToOne

 @PrimaryKeyJoinColumn

 public Purchasing_Address getAcrossA1_to_address() {

 return acrossA1_to_address;

 }

 public void setAcrossA1_to_address(

Purchasing_Address other_side) {

 acrossA1_to_address = other_side;

 }

}

Join Table

Another way to implement an association is by using a join table, a
table containing a column for each of the identifier attributes of the
participating classes. To specify a JoinTable, mark the association with
the name of the join table using the EjbJoinTable marking. Mark the
name of the join table column for each of the participants by adding
the EjbJoinTableColumn marking to each of the participants.

For example, we could specify the join table and column names for the
one to many unidirectional association A3:

Mapping Platform Independent Models to EJB 3.0

16

BinaryRel,CustomerRelations.Purchasing.A3,EJBJoinTable,CUSTOMER_PHONE

Participant,CustomerRelations.Purchasing.A3.Customer.customer,EJBJoinTableColumn,CUST
OMER_ID

Participant,CustomerRelations.Purchasing.A3.Phone.phone,EJBJoinTableColumn,PHONE_ID

The JoinTable annotation is inserted under the OneToMany

@Entity

public class Purchasing_Customer implements

 java.io.Serializable

{

 private Set<Purchasing_Phone>

acrossA3_to_phone;

 @OneToMany

 @JoinTable(name="CUSTOMER_PHONE"),

 joinColumns={@JoinColumn(name="CUSTOMER_ID")},

 inverseJoincolumns={@JoinColumn(name="PHONE_ID")})

 public Set<Purchasing_Phone>

 getAcrossA3_to_phone()

{

 return acrossA3_to_phone;

 }

 public void setAcrossA3_to_phone(

Set<Purchasing_CreditCard> other_side)

{

 acrossA3_to_phone = other_side;

 }

}

Ordered Associations

To order an association, set the SortKey property of the participant to
a comma separated list of the names of the sort key followed by the
direction of the sort. Use ASC for ascending and DESC for descending
order. For example, to sort the list of customers that shop at a store
ascending by first name only, set the SortKey property of the
Customer participant to "firstName ASC". The OrderBy annotation is
entered and a List is used to represent the relationship rather than a
Set.

Mapping Platform Independent Models to EJB 3.0

17

@Entity

public class Purchasing_Store implements

 java.io.Serializable

{

private List<Purchasing_Customer>

acrossA6_to_customer;

 @ManyToMany(mappedBy="acrossA6_to_store")

 @OrderBy("firstName ASC")

 public List< Purchasing_Customer >

 getAcrossA6_to_customer()

 {

 return acrossA6_to_customer;

 }

 public void setAcrossA6_to_customer(

List<Purchasing_Customer> other_side)

 {

 acrossA6_to_customer = other_side;

 }

}

To sort ascending by last name as the primary key and then first name
as a secondary key, set SortKey of the Customer participant to
"lastName ASC, firstName DESC".

Fetch Optimization

When an entity is retrieved from the database its entities related with
multiplicity many are not retrieved by default. If the relationship is
traversed after the source entity is retrieved, the application will need
to make another query to the database. For associations that are
frequently traversed, you can set the EjbFetchType to EAGER to cause
the entity and its related classes to be fetched in one database query.

Use this optimization sparingly and consider carefully the entire
network of entities. Using this optimization on too many associations
could cause slow performance because a large amount of data must be
queried each time a parent entity is retrieved.

Mapping Platform Independent Models to EJB 3.0

18

Inheritance Relationships

The Single Table strategy is used for inheritance hierarchies. The
instances of the all the classes in the hierarchy are stored in a single
table. The table contains columns for the superset of attributes
contained in all classes in the hierarchy. A single table containing the
superset of all the attributes of the classes in the hierarchy is created.
A discriminator attribute is added to determine the subclass of the
row.

The @Inheritance annotation will be added to the class at the root of
the inheritance hierarchy.

@Entity

@Inheritance(strategy=InheritanceType.SINGLE_TABLE)

public class Purchasing_Person implements
java.io.Serializable

{

}

The EjbDiscriminatorColumn specifies the name of the column used to
determine the class stored in a row. The DiscriminatorColumn
annotation is inserted. For example if we set the
EjbDiscriminatorColumn marking for the Person class to
"PERSON_TYPE" and the EjbDiscrimintorColumnType to INTEGER, the
following code will be generated:

@Entity

@Inheritance(strategy=InheritanceType.SINGLE_TABLE)

@DiscriminatorColumn(name="PERSON_TYPE", discriminatorType
= DiscriminatorType.INTEGER)

@DiscriminatorValue("1")

Mapping Platform Independent Models to EJB 3.0

19

public class Purchasing_Person implements
java.io.Serializable

{

}

For INTEGER and CHAR discriminator types, the templates will
automatically assign numbers or characters to each subtype. For
String discriminators, the default is to use the class name. The default
discriminator value can be overridden by specifying the
EjbDiscriminatorValue for a class in the hierarchy.

Behavior

Domain Services

The domain interface maps to a session bean. The session bean has a
method for each service.

The EjbPersistenceContextUnitName marking specifies the name of the
persistence unit for the domain. The persistence units are data
sources defined in the persistence.xml deployment descriptor.

The EjbPersistenceContextType specifies whether the persistence
context is transaction scoped or extended. Transaction scoped
contexts are destroyed after a transaction completes. All the entity
beans are detached from the context when the transaction completes.
They become plain java objects and subsequent changes with set
functions are not written to the database.

Extended persistence contexts are maintained outside of transactions.

The transformation rules create remote and local interfaces that
implement the domain interface. The rules also create a domain
session bean that implements both the remote and local interfaces.
For example, the java templates generate an interface class:

public interface <domain_name>_IF

{

 // signatures of services provided by the domain

}

EJB defines local and remote versions of the interfaces:

@Remote

Public interface <domain_name>Remote

{

}

Mapping Platform Independent Models to EJB 3.0

20

@Local

public interface <domain_name>Local

{

}

A stateless session bean implements the local and remote interfaces:

@Stateless

public class <domain_name>Bean

 implements <domain_name>Remote, <domain_name>Local

{

 // implementations of domain services

}

Transactions

The transactional behavior of domain session beans and domain
services can be controlled by the EjbTransactionAttribute marking. By
default, domain session beans and domain services require a
transaction. If the caller already has a transaction context, the session
bean uses the context. If the caller has no transaction context, a new
context is created. The new context extends for the duration of the
domain service call.

To set the transaction attribute for all services of the domain session
bean, set the EjbTransactionAttribute marking for the domain.

To set the transaction attribute for a single service, set the
EjbTransactionAttribute marking for the domain service.

If a domain service has a different transaction attribute than the
domain, the domain service transaction attribute will override the
domain marking for that domain service only.

Setting the EjbTransactionAttribute causes the @TransactionAttribute
to be inserted, i.e.

@Stateless(name="MyDomainBean")

@TransactionAttribute(TransactionAttributeType.NEVER)

public class MyDomainBean implements MyDomainRemote,
MyDomainLocal

{

}

The legal values for EjbTransactionAttribute are:

Mapping Platform Independent Models to EJB 3.0

21

EJBTransactionAttribute
Marking Value

Meaning

MANDATORY The domain services must always be a part of
the caller's transaction. The session bean
can't start its own transaction.

REQUIRED The domain service uses the callers
transaction. If the caller has no transaction,
a new transaction is started.

REQUIRES_NEW Always start a new transaction even if the
caller has one already.

SUPPORTS Use a transaction if the caller has one.
Otherwise, don't use a transaction.

NOT_SUPPORTED The callers transaction is suspended during
the call. The call doesn't use a transaction
context.

NEVER The caller must not have a transaction
context. If it does, an exception will be
thrown.

See pages 364 – 370 of [BURKE2006] for a discussion transaction
attributes.

Class Services

Class services are implemented by the adjunct
<domain_name>_<class_name> class to support the separation of
business logic from data prescribed by EJB.

State Actions

State actions are implemented by the adjunct
<domain_name>_<class_name> class to support the separation of
business logic from data prescribed by EJB.

Initialization Actions

System and domain initialization actions are not supported in EJB. The
application should provide a domain service to initialize the system.
The domain service session bean can be called from outside to
initialize the system.

State Models

Entity Beans with state models will include an extra field to hold the
current state of the instance.

Each domain service invocation originating from a session bean has its
own task context. The task context contains the instance lists of all
non-entity classes as well as the task and event queue. After the
domain service invocation completes, the task consumes the events in
the queue. When the queue is empty, the task packages up its output
parameters and returns them to the client.

Mapping Platform Independent Models to EJB 3.0

22

Since there are multiple session beans running concurrently, actions,
class operations and services must know the current task when
generating an event. The Task is stored as a thread local context.

Incident Handles

Entity beans may have attributes of type IncidentHandle. The incident
handles and their parameters are stored in tables related to the entity
bean. By default, these tables will use the EJB naming conventions.

To override the default table name generated by the incident handle
entity bean, set the EjbIncidentHandleTableName marking on the
system to the name of the table used to store incident handles.

To override the default table name generated by the incident handle
parameter entity bean, set the EjbIncidentHandleParameterTableName
marking on the system to the name of the table used to store incident
handle parameters.

Timers

Timers are implemented using the EJB Timer Service. The GENERATE
AFTER action language statement is supported for entity beans.
Periodic incident handles are supported where the incident is a domain
service, an event to an entity or a class or instance based operation of
an entity bean. In addition a TimeServices realized domain provides
services to set a timer for a particular day and time.

The EJB TimerService is injected into each domain Session Bean. The
timer service is stored in the PfdContext. When a delayed event is
generated or a periodic incident is created, an EJB timer is created.
The timer info contains a persistent form of a PfdIncident. The domain
Session Bean provides a timeout method to handle timer incidents.
The timeout method gets the persistent incident, converts it to a
PfdIncident, enqueues it and then processes the event loop :

@Stateless
public class PurchasingBean implements PurchasingRemote,
PurchasingLocal
{
 // inject the timer service into the domain session bean
 @Resource javax.ejb.TimerService timerService;

 @PersistenceContext(unitName = "Purchasing")
 private EntityManager entityManager;

 /** The MBSE execution context for the bean. */
 public SysContext pfdContext;

 @PostConstruct
 public void initBean()
 {

Mapping Platform Independent Models to EJB 3.0

23

 // store the timer service in the context
 pfdContext = new SysContext(entityManager, timerService);
 pfdContext.register();
 pfdContext.task.registerSystemRouter(new Router());

 // setup the connections and realized implementation interfaces
 SW.registerRealizedClass(new System.SW.SW_Impl());
 pfdContext.unregister();
 }

 @Timeout
 public void processTimerEvents(javax.ejb.Timer timer)
 {
 IncidentHandleBean timer_incident = null;
 if (timer.getInfo() instanceof IncidentHandleBean)
 {
 timer_incident = (IncidentHandleBean)timer.getInfo();
 }
 else if (timer.getInfo() instanceof IncidentTimerInfo)
 {
 timer_incident =
((IncidentTimerInfo)timer.getInfo()).getIncident();
 }

 System.out.println("Timer expired");

 if (timer_incident != null)
 {
 // register thread
 pfdContext.register();

 try
 {

PfdTask.getTask().enqueueIncident(IncidentHandleHelper.toIn
cidentHandle(timer_incident));

 // spin the event loop until no more processing
 pfdContext.task.processOOA();
 }
 finally
 {
 // unregister thread
 pfdContext.unregister();
 }
 }

 }

When a delayed event is generated to an entity, the EJB timer service
creates a single-action timer with the persistent form of the event
incident:

public void generateAfter_Pulse(int process, PfdTask task,
PfdActiveObject sender, long delay_)
{

Mapping Platform Independent Models to EJB 3.0

24

 IncidentHandleBean incident =
 new IncidentHandleBean(PfdIncident.EVENT_INCIDENT,
 Sys.DOMNUM_IncidentHandleCases,
 IncidentHandleCases.EVNUM_GenId_Pulse, 0);
 incident.setDestinationId(makeDestinationIdString());
 incident.setPriority(0);
 ((SysContext)PfdTask.getContext()).getTimerService().
 createTimer(delay_, incident);
}

The templates use the TimeServices domain to manage periodic
incidents. The TimeServices interface offers the full capability of EJB
timers including single action and interval timers.

The TimeServices domain will provide the following services to set
single action and interval timers for a particular date and time. The
TimeServices domain supersedes periodic incident services provided
by Software Mechansims.

Setting a Timer

The service TimeServices:CreateSingleActionDurationTimer
creates a single action timer that executes an incident once after a
duration of time.

The service TimeServices:CreateSingleActionDateTimer creates a
single action timer that executes an incident once on the specified date
and time.

The service TimeServices:CreatePeriodicDurationTimer creates a
periodic timer that executes the incident once after the specified delay
and periodically at the specified interval.

The service TimeServices:CreatePeriodicDateTimer creates a
periodic timer that executes the incident once on the specified date
and then periodically at the specified interval.

Cancelling a Timer

Each of the services used to set a timer returns a ts_timer_handle_t.
The ts_timer_handle_t can be persisted in an entity and then used
later to cancel the timer.

To cancel a particular timer, call TimeServices:CancelTimer and
provide its ts_timer_handle_t.

To cancel all timers, call TimeServices:CancelAllTimers.

Setting a Date

To set a date, call the TimeServices:CreateDate or
TimeServices:CreateDateTime service.

Attribute Selection

Get and set accessor functions are generated for each attribute. The
implementation of entity beans is contained in two separate classes.

Mapping Platform Independent Models to EJB 3.0

25

The logic class contains a reference to the entity bean and is a façade
for the entity bean. The accessor function for the logic class gets the
attribute value from the entity bean. For example:

@Entity

public class Purchasing_CustomerBean

{

 private String name;

 String getName() { return name;}

 String setName(String name) { this.name = name; }

}

Public class Purchasing_Customer

{

 private Purchasing_CustomerBean entityBean;

 public getname() { return entityBean.getName();}

public setname(String in_name)

{ entityBean.setName(in_name); }

}

Instance Creation

The create method for entity beans creates an instance of the entity
bean, fills in its attribute values and then calls the entity manager to
persist the entity bean.

Instance Deletion

The deleteObject method for entity beans unplugs the instance from
its associations and then calls the entity manager to remove the
entity.

Find

For entity beans global finds (FIND CLASS) are implemented as
queries in the EJB Query Language (EJB QL). The query is executed
by the entity manager. Instances of the logic classes are created for
each of the entities returned in the results. The logic class have the
same interface as nonentity classes and thus the generated code is the
same as for non-entity classes.

For Each

For entity beans global FOR EACH statements are implemented as
queries in the EJB Query Language (EJB QL). See the section on Find
for more information.

Mapping Platform Independent Models to EJB 3.0

26

Navigation

Association navigation for entity beans are implemented in the logic
class. The logic class façade accesses the entity bean relationship
methods. The related entity beans are adapted to instances of the
logic class.

Link and Unlink

Links and Unlinks of entity beans are implemented by the entity bean
relationship accessors. The logic class calls the get and set methods of
the entity bean relationships.

Service Invocation

Service invocations are implemented by calls to Java methods.

SubSuperNavigation

SubSuperNavigations are implemented using java instanceof operator
and casts.

4. Deployment

Specifying the Data Source

The persistence.xml file specifies the data source to be used during
deployment. Create a data source that references the database for
the application. Set the system marking EjbDataSource to the name
of the data source. The datasource will be output in persistence.xml
as follows:

<persistence-unit name="UnitName" transaction-type="JTA">
 …
 <jta-data-source>data_source_name</jta-data-source>

 …

 </persistence>

JNDI Names for Session Beans

The JNDI name for a session bean affects how it is located in a remote
client using the initial context. The JNDI name for asession bean by is
ejb/<jndi_prefix><domain_name>. The default jndi_prefix is the
system name. To change the prefix, specify the EjbJndiPrefix system
marking to the desired name.

Table Name Length Checking

Some databases such as ORACLE restrict the maximum length of table
names. By default, the table name for an entity bean is the name of
the domain followed by an underscore followed by the name of the
class. If the generated table name is longer than the maximum, the
templates report an error. The default maximum length is 30. To

Mapping Platform Independent Models to EJB 3.0

27

overrided the default the maximum length, set the system property
EjbMaxTableNameLength.

To shorten the table name for the entity bean, specify a short(one or
two character) EjbTablePrefix property on the domain.

5. Design Decisions

This section describes the decisions that were made when designing
the mappings from PIM to EJB and the rationale behind them.

Annotations vs. XML Deployment Descriptor

EJB deployment information can be specified by annotated Java code
or in a separate XML file called the Deployment Descriptor. XML
Deployment Descriptors decouple the Java from the EJB APIs. The
generated code would look just like regular java code. The annotated
Java code is advantageous because it is easier to read. Using XML
Deployment Descriptors would help decouple realized code from EJB.
In generated code, we can always change the properties and generate
new annotations or plain java so we chose annotations to optimize
readability.

Representing Composite Primary Keys

There is more than one way to represent a composite primary key. A
separate primary key class can be created with the primary key
attributes or a reference to a primary key class can be embedded in
containing class using the EmbeddedId. A separate class was chosen
because it will be easier to generate and will integrate more readily
with the existing generated code.

Multitable Mappings

Multitable mappings allow entities to be broken up between multiple
tables. Multitable mappings are not supported at this time. They
seem mostly useful for integrating with legacy database structures. At
this point, we don't anticipate integrating with legacy databases.

Collection Types for Many Associations

A set was selected to be used when storing a many relationship. The
Set is most consistent with the semantics of action language.

FIFO and LIFO Instance Ordering

FIFO and LIFO Instance ordering of entity beans is not implemented at
this time. In the future it could be added by adding a sequence
number or timestamp attribute to the entity and sorting ascending or
descending on that attribute.

Mapping Platform Independent Models to EJB 3.0

28

Cascading

Cascading specifies which persistence operations should be
automatically performed on related entities. For example, when an
entity is deleted, its associated entities can be deleted as well.
Cascading can be performed on persist, fetch, remove, refresh, delete
or all of these. Burke & Monson-Haefel recommends the following on
pg. 158: "Be aware of how your entities will be used before deciding
on the cascade type. If you are unaware of their use, then you should
turn off cascading entirely. Remember, cascading is simply a
convenient tool for reducing the EntityManager API calls." We will
address Cascading later to determine if it is required.

Inheritance Strategy

The Single Table per Class Hierarchy was selected because it is
simplest implementation and offers the best performance. There is
only one table to administer. On the negative side, the table is not
normalized because not all columns are relevant for all classes in the
hierarchy. The NOT NULL constraint can't be applied to the columns of
this table.

Association Classes

One possible way to represent Association Classes is to use a join
table. The Association class is a JoinTable of the related classes. The
identifier of the Association class is composed of the identifiers of both
related classes. This strategy will not work because of the way action
language is specified. An instance of the association class is created
and then the instance is used during the link. When the association
class is persisted, it is does not yet know the values for its primary
keys. The JoinTable annotation does not work well with relationships
that are not ManyToMany or bidirectional.

To implement association classes, each participant in the association
has a relationship to the associative class. The associative class then
has a relationship to back to each participant.

6. Markings

System

Marking Name Default
Value

Effect

EjbJarDisplayName System
language id

The display name specified
in the ejb-jar.xml
deployment descriptor.

EjbApplicationServer WebLogic Determines which
application server specific
deployment descriptors
are generated, i.e.

Mapping Platform Independent Models to EJB 3.0

29

weblogic-ejb-jar.xml

EjbDataSource "" Specifies the name of the
data source where entity
bean data is located. The
data source will be
included in persistence.xml
deployment descriptor in
the jta-data-source
element.

EjbGenSequenceGenerators F If T, Add
SequenceGenerators to all
generated identifier
annotations. Create a
sequence table named
SQ_<class_table_name>.
If F, use the default
automatic id strategy for
generated identifiers.
Generate the file
generate_sequences.sql
containing the SQL to
create the sequences.

EjbIncidentHandleParameterTableName "" Override the default EJB
table name for the table
used to store incident
handle parameters.

EjbIncidentHandleTableName "" Override the default EJB
table name for the table
used to store incident
handles.

EjbJndiPrefix System
name

The prefix added before
the JNDI name of each
domain exposed as a
session bean.

EjbMaxTableNameLength 30 The maximum length for
table names. If an entity
bean's table name contains
more than this number of
characters, an error
message will be reported
at transformation time.

Domain

Marking Name Default Value Effect

EjbPersistenceContextUnitName "" The name of the persistence
context for the domain. The

Mapping Platform Independent Models to EJB 3.0

30

persistence context will be
defined in the persistence.xml
deployment descriptor. All
entity beans contained in the
domain will exist in the
persistence context.

EjbSessionBean "F" If "T", a stateless session bean
interface to the domain is
generated. If "F", no session
bean is generated.

EjbTablePrefix "" A short prefix for the names of
the tables generated for entities
in a domain. Used to construct
names for the entity beans.
Helps stay within table name
limits for some databases such
as Oracle.

EjbTransactionAttribute "" If EjbSessionBean marking is set
to T for the domain, define the
default transaction attribute for
services provided by this
domain. The transaction
attribute defines whether a
transaction is required by a
domain service and if the
domain service can use the
transaction context of the caller.
See section Transactions on
page 20 for legal values for this
marking.

Domain Service

Marking Name Default Value Effect

EjbTransactionAttribute "" If EjbSessionBean marking is set
to T for the domain, define the
transaction attribute this domain
service. The transaction
attribute defines whether a
transaction is required by a
domain service and if the
domain service can use the
transaction context of the caller.
See section Transactions on
page 20 for legal values for this
marking.

Mapping Platform Independent Models to EJB 3.0

31

Class

Marking Name Default Value Effect

EjbEntityBean F If T, create an entity bean
representing this class. Insert the
Entity annotation for the class and
generate an Entity bean. If F, create
a plain java class.

EjbTable "" If set, insert the Table annotation
@Table(name="<EJBTable>") before
the class declaration. If not set, a
default name consisting of the
EjbTablePrefix for the domain and
the name of the class is used.

EjbDiscriminatorColumn "" Relevant to the root class of an
inheritance hierarchy using the
single table inheritance mapping.
Specifies the name of the column
used to determine the type of
subclass stored in a row. If not set,
use the default column name.

EjbDiscrimintorColumnType "" Relevant to the root class of an
inheritance hierarchy using the
single table inheritance mapping.
Specifies the type of the column
used to determine the type of
subclass stored in a row. Should be
one of STRING, INTEGER, or CHAR.

EjbDiscriminatorValue "" Relevant to any class in an
inheritance hierarchy. Specifies the
value of the discriminator column for
this class.

Attribute

Marking Name Default
Value

Effect

EjbColumn "" If set, insert the Column annotation
@Column(name="<EjbColumn>") before
get and set methods. If not set, no
Column is specified and EJB will use the
default database mappings.

EjbIdGenerationStrategy "" If set on an identifier attribute, insert the
@GeneratedValue annotation and set the
strategy to the value of this attribute.
Supported strategies are AUTO,

Mapping Platform Independent Models to EJB 3.0

32

IDENTITY, TABLE and SEQUENCE.

EjbIdGeneratorProperties "" Relevant for an identifier attribute with
EjbIdGenerationStrategy set to TABLE or
SEQUENCE. Specifies all properties of
the SequenceGenerator or
TableGenerator annotation except for the
name. The value should be a set of
name value pairs, i.e. for a sequence
generator specify the name of sequence
table as follows:

sequenceName="RESOURCE_SEQUENCE"

EjbTransient F If T, use the @Transient annotation
before the get and set methods for this
attribute.

Participant

Marking Name Default Value Effect

EjbFetchType "" If set to EAGER, retrieve this
association participant in a single
database query when its related
participant is retrieved. If set to LAZY,
retrieve this participant in a separate
query.

EjbJoinColumn "" If set, specifies the name of the column
of the entity table that refers to the
related object. The JoinColumn
annotation is specified. If not set, the
JoinColumn annotation is not added.

EjbPrimaryKeyJoin "" If set on an identifier attribute, insert
the @GeneratedValue annotation and
set the strategy to the value of this
attribute. Supported strategies are
AUTO, IDENTITY, TABLE and
SEQUENCE.

EjbJoinTableColumn "" If set, specifies the name of the column
in the join table that refers to the
participant object. Specifies the
joinColumns and inverseJoinColumns
properties of the JoinTable annotation.
If set, the EjbJointTable marking must
be set for the association. If multiple
columns are used for the join, specify
the columns in a comma separated list.

SortKey "" For a participant with many multiplicity
specify the sort order of the traversal
from the opposite participant. Specify

Mapping Platform Independent Models to EJB 3.0

33

a comma separated list of attribute
names followed by direction. Use ASC
for ascending and DESC for
descending. The attributes should be
attributes of the participant class. For
example to sort by firstName and then
lastName, use "firstName ASC,
lastName ASC". For lastName only use
"firstName ASC".

NOTE: The SortKey property for
Participants should be set in the
properties.txt file. Do not use the
SortKey on the Properties view. It is
not currently extracted.

Association

Marking Name Default Value Effect

EjbJoinTable "" If set, specifies the name of the
JoinTable implementing the association.
If set, each participant should specify
the EjbJoinTableColumn.

If not set, use the EjbTablePrefix for
the domain followed by the relationship
number.

User Defined Type

Marking Name Default Value Effect

EjbBlob F If T, insert the @Lob annotation for
attributes of this type. An attribute
marked with the Lob annotation is
stored in the database using a BLOB or
CLOB type. These types should be
used for very long strings or large
bitmaps. For example, ORACLE has
restrictions on the maximum number of
characters that can be stored in a
string. For large string types, a CLOB
is required.

7. Annotation to Marking Index

Annotation Name PIM Element Marking Name or Stereotype

Mapping Platform Independent Models to EJB 3.0

34

Entity Class EjbEntityBean

Table Class EjbTable

Table Domain EjbTablePrefix

Table System EjbIncidentHandleTableName

Table System EjbIncidentHandleParameterTableName

PersistenceContext Domain EjbPersistenceContextUnitName

PersistenceContext Domain EjbPersistenceContextType

TransactionAttribute Domain EjbTransactionAttribute

TransactionAttribute DomainService EjbTransactionAttribute

Column Attribute EjbColumn

Id Attribute Identifier stereotype

Lob Attribute EjbBlob

GeneratedValue Attribute EjbIdGenerationStrategy

GeneratedValue System EjbGenSequenceGenerators

TableGenerator Attribute EjbIdGeneratorProperties

SequenceGenerator Attribute EjbIdGeneratorProperties

SequenceGenerator System EjbGenSequenceGenerators

IdClass Attribute Identifier stereotype

Transient Attribute EjbTransient

Temporal DataType sys_date_t, sys_time_t, and
sys_timestamp_t user defined types

Enumerated DataType Enumerated data type

JoinColumn Participant EjbJoinColumn

PrimaryKeyJoinColumn Participant EjbPrimaryKeyJoinColumn

JoinTable Association EjbJoinTable

JoinTable Participant EjbJoinTableColumn

JoinColumn Participant EjbJoinTableColumn

OrderBy Participant SortKey

DiscriminatorColumn Class EjbDiscriminatorColumn

DiscriminatorColumn Class EjbDiscriminatorColumnType

DiscriminatorValue Class EjbDiscriminatorValue

8. Model Restrictions

Mapping Platform Independent Models to EJB 3.0

35

The following modeling elements are not currently supported:

 Persistent IncidentHandles may only carry parameters with
basic types. Complex types such as serializables or groups are
not currently supported.

9. References

[BURKE2006] Burke, Bill and Richard Monson-Haefel. Enterprise
JavaBeans 3.0 (Fifth Edition). O'Reilly, Cambridge, 2006.

10. Appendix

How to Specify Stereotypes for Model Elements

Stereotype for model elements are set in the UML Editor. This section
gives instructions on how to set stereotypes in various modeling
editors.

Rational Software Modeler

1. Switch to the Modeling perspective.
2. Select the model element to which the stereotype will be

applied.

3. In the Properties view, click on the Stereotypes tab.

4. Click on the Apply Stereotypes… button. The Apply Stereotypes
dialog is shown.

5. Check the stereotype to apply.

6. Click Ok. The Apply Stereotypes dialog is dismissed.
7. The stereotype name surrounded by << >> now appears

before the attribute name in Project Explorer. The icon
representing the model element may change as well.

