
©2008 by Pathfinder Solutions

Incident Priority

Version 1.4

February 18, 2004

PathMATE Technical Notes

Pathfinder Solutions LLC

33 Commercial Drive, Suite 2

 Foxboro, MA 02035 USA

www.PathfinderMDA.com

888-662-7284

 ii

Table Of Contents

1. Introduction... 1

2. Design Approach .. 1

Specification of Class and Incident Priority.. 1

PfdIncident Priority and Scheduling ... 1

Local ServiceHandle Limitations .. 1

3. Modeling Considerations .. 3

Testing Considerations ... 3

Delayed Events ... 3

Self-directed Events .. 4

Starvation .. 4

Prioritized Service Handles ... 4

Untriggered Transitions .. 4

4. Specifying a Complete Response Path .. 4

Incident Priority

1

1. Introduction

This Technical Note describes how the specification of priority for Incidents (Events

and ServiceHandles) will be supported, and how this capability can be applied to

achieve better control over the scheduling behavior of the PfdTask (SW_Task in C).

This capability would be used to reduce the number of actual RTOS tasks used in a

specific Structural Design, and still achieve the most rapid responses possible for

certain specified Incidents. Essential we are moving the management of some

tasking priorities from the RTOS task scheduler to the PfdTask, where the problem is

simplified and we have more control.

2. Design Approach

There are 2 key aspects to implementing Incident Priorities: priority specification and

priority capture/scheduling.

Specification of Class and Incident Priority

Through the use of a properties.txt file, the Incident property “Priority” will be

specified by the designer, and assigned to Events and Services (Service

priorities are only considered when a ServiceHandle is created, or if a domain

service is invoked in an inter-task context). Any literal integer constant value

or symbolic constant (positive or negative) is supported. Higher priority

numbers result in more rapid scheduling than lower priority numbers. The

default value is the Priority of the Incident’s defining class.

The Class property “Priority” is provided for convenient control over related

groups of Events and Services. The default value is 0. The class’ priority

value specifies the default priority value for all Events and Services defining

for that class. Please note, in the case of polymorphic events, it is the

defining class (the supertype) and not the receiving class (the subtype) that

specifies an Event’s default priority.

PfdIncident Priority and Scheduling

A new data member of the PfdIncident class (SW_Incident in C) will be

populated with the specified Incident priority upon incident creation. When

an Incident is queued with a specific PfdTask, the priority is used to determine

where to insert the Incident in the incident queue – the Incidents will be

arranged in descending order or priority.

Incidents will continue to be processed in the order they appear in the

incident queue.

(If run-time performance issues arise, a simple optimization can be applied to

speed incident insertion into the appropriate queue position: a list or array of

list insertions positions can be maintained, one for each priority. However it

is not anticipated that such an optimization will be required.)

Local ServiceHandle Limitations

An Incident is an Event or a ServiceHandle. All Events go into the

PfdTask(SW_Task) incident queue - intertask and task-local. However only

intertask ServiceHandles go into the PfdTask's incident queue. Task-local

Incident Priority

2

ServiceHandles are dispatched directly - they do not go into the queue. For

example, in the Robochef system, ServiceHandles are needed to

communicate with the ApplianceInterface domain:

FoodPrep
<<domain>>

ApplianceInterface
<<domain>>

Robochef Domain Model fragment

services

InitializeDevice()
ApplianceRequest()
ContainerArrived()
ContainerLeft()

<<Interface>>

ApplianceInterface Domain Services

In the ApplianceInterface domain, the ServiceHandle parameters provided to

the AI:ApplianceRequest domain service are saved as attributes of the Device

class:

Device

address : appliance_handle_t
type : appliance_type_e
currentActivity : appliance_activity_type_e
activityDuration : Real
controlPanelHandle : vcp_info_handle_t
controlPanelInfo : vcp_info_handle_t
commBusReady : Boolean
completionService : ServiceHandle
errorService : ServiceHandle
uiReady : Boolean
requestFailed : Boolean
internalActivityComplete : ServiceHandle

vcpAck()
actionComplete()
vcpDown()

Robochef. ApplianceInterface.Device class, and Device.Completing

state

When a request has been successfully completed, the

Device.completionService is CALLed from the Device.Completing state entry

action:

Incident Priority

3

Device.Completing state entry action (partial):
CALL completionService();

This CALL is generated to the following code for C++:

if(this->completionService)
{

this->completionService->deliver();
}

The PfdIncident::deliver() method determines if the destination task is the

same as the sending task (local) or not. If it is not local, then the incident

gets queued in the destination task’s incident queue, and therefore is subject

to incident priority.

If it is local, the incident’s virtual sendLocal() method is called. In the case of

a PfdEvent, the sendLocal() method calls PfdTask::enqueueSelfEvent() or

PfdTask::enqueueEvent(), and again is subject to incident priority. However

if the incident is local and it is a PdfServiceHandle, then PfdIncident::deliver()

calls PfdServiceHandle::sendLocal(), which calls

System::RouteServiceInvocation() – avoiding the local task’s incident queue,

and therefore avoiding any incident priority because it is dispatched

immediately – synchronously. (This local-case synchronous dispatch is a

key aspect of the execution semantics of the ServideHandle.)

3. Modeling Considerations

A significant rule of OOA is the all Events sent by one Class instance to another Class

instance must be received in the order that they are sent. It is up to the analyst to

ensure that the specification of non-default priority for any Event does not potentially

create a scenario in violation of this rule.

Some conventions can help avoid this issue, or identify problematic situations. One

or more of the following can help:

- Ensure all events received by a class all have the same priority by using the

class priority value.

- Ensure all classes in an active hierarchy all have the same priority.

- Ensure all events sent from one class to another all have the same priority.

- Use non-default priorities sparingly.

Testing Considerations

Delayed Events

Since delayed events are currently put into the event queue after their timer

expires in all designs, delayed events will now be entered into the event queue

based on their priority. This may have the additional side effect of delaying the

event further.

Incident Priority

4

Self-directed Events

Priority will override the self-directed event semantics. A self directed event

with a lower priority will be placed behind a non-self directed event with a higher

priority.

Self directed events will be placed in the queue based on event priority and

desitination. A self directed event will be inserted before another non-self

directed event with the same priority and to the same destination.

Self directed test cases with no event priorities specified should operate the

same,

Starvation

Higher priority cycles of events may keep lower priority events from being

handled.

Prioritized Service Handles

Service handles are not mixed in with the event queue currently. Intertask

service handles are kept in a separate queue and are processed in

PfdTask.processAsynchronousInputs. This approach processes one event for

every one external service handles.

Setting priority on service handles will have no discernable effect until both are

combined into one event queue.

Untriggered Transitions

Untriggered transitions are a special case of self-directed events. Untriggered

events need to be processed before any other event to that instance. Since the

untriggered “event” will be placed in the event queue in front of any other events

to the instance. This is accomplished by setting the priority of untriggered events

to one higher than the highest event priority on the class.

4. Specifying a Complete Response Path

This section outlines the steps needed to initiate a response from realized code all

the way from realized code at the edge of our system through the chain of high-

priority incidents in the modeled domains. For this example let’s return to the

Robochef.ApplianceInterface.ApplianceRequest service. Presume our Design requires

that all error case reporting from appliance hardware must be acted upon as soon as

possible.

In this case we specify the entire communication chain from the realized Appliance

Bus code up to the FoodPrep.Active recipe. Starting from the bottom up we see the

ApplianceBus realized code calls a ServiceHandle to the class service

AI.Device.actionComplete.

ApplianceBus.SendBusMessage domain service (C++, partial):

actionCompleted->sendLocal();

Please note: In general hand-written code should invoke the PfdIncident::deliver()

method, so the interface from realized code does not change. As noted in section

2.3, deliver() will either call sendLocal() for local-task incidents or queue the incident

to a remote destimation tasks’s incident queue.

Incident Priority

5

The ApplianceInterface.DEV:RequestComplete event must receive high priority.

Robochef. ApplianceInterface.Device class lifecycle (partial)

From here we can see the Device.errorService ServiceHandle must point to a high

priority service. We see in the FoodPrep.Appliance.performOperation class service

that the Device.errorService handle points to FoodPrep.Appliance.opFailed:

FoodPrep.Appliance.performOperation class service (partial):
actionFailed = CREATE ServiceHandle(this = this) TO APPL:opFailed;

The FoodPrep.Appliance.opFailed class service generates the event APPL:OpFailed,

which then causes the generation of AR:StepFailed.

Robochef. FoodPrep.ActiveRecipe class lifecycle (partial)

Properties.txt should include:

Event,Robochef.AI.DEV.RequestComplete,Priority,1
ObjectService,Robochef.FP.APPL.opFailed,Priority,1
Event,Robochef.FP.APPL.OpFailed,Priority,1
Event,Robochef.FP.AR.StepFailed,Priority,1

Incident Priority

6

This we full specify the response path from realized code (AB_services.cpp) to the

final response action (ActiveRecipe.DetermingIf MoreFailSteps entry).

