
©2008 by Pathfinder Solutions

PathMATE Interface Realization

Support

Version 1.4

March 4, 2004

PathMATE Technical Notes

Pathfinder Solutions LLC

33 Commercial Drive, Suite 2

 Foxboro, MA 02035 USA

www.PathfinderMDA.com

888-662-7284

 ii

Table Of Contents

1. Introduction... 1

2. Feature Overview ... 1

Analysis Constraints .. 2

3. PathMATE Extract and Transformation Engine Impacts 4

4. PathMATE Maps Impacts .. 4

5. Constraint Checking ... 4

PathMATE Interface Realization Support

1

1. Introduction

This Technical Note describes support to be provided in the PathMATE product family

for Interface Realization using the UML Realize relationship. This document outlines

modeling conventions and constraints, model checking features, and implementation

features.

2. Feature Overview

A UML Interface class specifies the interfaces for a set of class services (operations).

These services may be instance-based or class-based. Zero or more regular UML

classes may specify they implement the specified set of services. This is indicated

through the use of the UML Realize relationship, with the arrow pointing from the

implementing class to the Interface class. In addition, Interface classes can Realize

interfaces specified by more general Interface classes.

LabPlant

measureGrowth()
endExperiment()
otherPlantThing()

LabAnimal

measureGrowth()
endExperiment()
otherAnimalThing()
chew()

Expe rimentSubject

measureGrowth()
endExperiment()

<<Int erface>>

FoodEater

chew()

<<Interface>>

MeatEater

gnawBones()
chew()

<<Interface>>

D og

gnawBones()
chew()
bark()

Cow

chew()

LabRat

endExperiment()
measureGrowth()
otherAnimalThing()
chew()

LabRaptor

gnawBones()
chew()
measureGrowth()
endExperiment()
otherAnimalThing()

S1 S1

PathMATE Interface Realization Support

2

Figure 1: Interface Realization class example model

In Figure 1 the ExperimentSubject Interface class specifies an interface

(measureGrowth() and endExperiment()) implemented by the LabPlant and

LabAnimal classes. In addition, the LabAnimal implements the FoodEater interface.

A specialized form of the FoodEater interface is specified by the MeatEater interface

class, and is implemented by the Dog and LabRaptor classes. The LabAnimal shows

interface realization by a supertype. LabRaptor shows that a single implementation

of chew() is needed for the chew() service inherited from it’s partner and also

realized from an interface.

The Interface class has a very narrow role – only to specify service profiles. In

addition to other limitations outlined below, and Interface class is abstract – like a

supertype class it cannot be instantiated. However in action language references to

an Interface class are allowed. Operations specified by the Interface class may be

invoked from an Interface class reference.

The action language fragment below will measure the growth all Lab things:

FOREACH thing = CLASS ExperimentSubject
{
 thing.measureGrowth();
}

In the above action fragment the measureGrowth() operation ends up being invoked

on all instances of LabPlant and LabAnimal.

Analysis Constraints

An Interface class can only specify operations.

- An Interface class cannot have attributes, states or class-based

(static) operations

- An Interface class cannot be an association class

- An Interface class cannot define MBSE events

- An Interface class cannot be instantiated

An interface may participate in associations (See the UML 2.0 Superstructure,

p 90). Classes that implement the interface must then present operations

that support the association operations.

PathMATE Interface Realization Support

3

FeedingPen
number : Integer = 0

FavoriteFood
type : String

foodType()

FoodEater

chew()
bite()

<<Interface>>

0..1

0..n

0..1

0..n

A9

0..n 0..n0..n 0..n

A8

Figure 2: Associations and Interfaces

Class extents, aka instance lists, are kept for all interfaces. FIND and

FOREACH are supported for Interface instance lists.

Association navigation to and from interfaces is supported with existing action

languagenavigation constructs. Associations between interfaces are also

supported.

For example, to link and unlink an interface to a class:

Ref<FavoriteFood> food = FIND FavoriteFood;
Ref<FoodEater> eater = FIND Dog; // casts are OK too.
LINK food A8 eater;
Ref<FoodEater> eater2 = FIND food -> A8; // navigation
UNLINK food A8 eater;

Interfaces may have sub types and super types. An interface may only have

other interfaces as supertypes. An interface may have other interfaces as

subtypes, or classes as subtypes through the <<realizes>> association.

An implementing class must realize each realized service exactly once:

- Every class that Realizes an Interface class must specify operations

matching every operation in the Interface class. An operation from an

interface may be implemented in a supertype class.

- If a class realizes or inherits (subtype/supertype) from two or more

classes, and two or more of these parents or interfaces have services

with the same name, all of these like named inherited/realized services

must resolve to the same single root service in the top level Interface.

This is shown correctly in the LabRaptor.chew() service above, where

PathMATE Interface Realization Support

4

it inherits chew() from LabAnimal and realizes chew() from MeatEater,

and both of these are defined at the same source: FoodEater.chew().

- If a class inherits/realizes two or more services with the same name

and they do NOT come from the same common root Interface service,

this is an error.

Methods from an interface may be implemented within an inheritance

association at any levelof the hierarchy, beneath the class that implements

the association. For example, from Figure 1, the measureGrowth() method is

defined in ExperimentSubject and implemented in LabAnimal, LabRat, and

LabRaptor. Care must be taken here when porting across languages. For

example, the Java implementation will always invoke the lowest level class

that implements the method (always virtual). In C++, if the methods are not

declared virtual (with a property) then the method invoked will depend upon

the type of pointer held – LabAnimal or LabRat.

3. PathMATE Extract and Transformation

Engine Impacts

The PathMATE for Rose extract facility will recognize the Realize relationship and

convey that information to the Transformation Engine. The Engine will import the

Realize relationship from XMI data, and perform appropriate checking (see Analysis

Constraints).

Interface classes must use the <<interface>> stereotype.

4. PathMATE Maps Impacts

Java and C++ will support Interface Realization with language support for

inheritance. C will support Interface Realization with generated function dispatchers

very similar to how operation polymorphism is currently supported for

subtype/supertype hierarchies.

5. Constraint Checking
The Maps, Extract, and the Transformation Engine check the following constraints on

interface usage and insert an error message into the generated file when these

constraints fail.

 - interfaces cannot have attributes

 - interfaces cannot have static methods

 - interfaces can only inherit from interfaces, not classes

 - a class must implement all the interfaces of all the class it inherits from

 - a classes parent class may implement the methods instead

 - a class may inherit from at most one class

 - name collisions among implemented interfaces

