
Static Instances Initialization in UML
Foundation for C

Version 2.6

September 26, 2003

PathMATE Technical Notes

Pathfinder Solutions LLC
33 Commercial Drive, Suite 2

 Foxboro, MA 02035 USA
www.PathfinderMDA.com

888-662-7284

©2003 by Pathfinder Solutions

Table Of Contents
1. Introduction...1

2. Analysis Conventions...1

Class...1

Association...2

3. Instance Data Specification..2

Spreadsheet-Based Data..2

4. Template Changes and Extensions...6

Data Schema Generation..6

External Tracking Structure for "Many" Side of Association.............................6

Static Instance Module...7

5. Additional Example..9

ii

Index-based Instance Identification

1.Introduction
This Technical Note describes the capabilities to be deployed in support of static
instance initialization in the UML Foundation for C implementation architecture. It
describes the model conventions required, coloring properties used, how
spreadsheet-based instance data is structured, and requirements for the generated
static initializers.

The benefits of static initialization of instances include:

- Instance setup happens with program loading, and it likely to be faster than
the execution of setup code.

- The instance information is stored in the program image, eliminating the need
for a separate persistence or message mechanism

Based on Pathfinder's extensive field experience, specific initialization needs will vary
substantially from one customer project to the next. Therefore it is expected that
the base solution described herein will form a base for those project-specific
customizations.

2.Analysis Conventions
Class

The new coloring property "StaticPopulation" will be defined for classes with a
default value of “FALSE”. A class with a "StaticPopulation" value of "TRUE" will
considered static, and cause code to be generated to support static initialization
of the class instance population. If "StaticPopulation" == "TRUE" the class
instance data for that class will be held in an array. If the "MaxIndex" property is
specified it will be used to determine of entries in this array, otherwise the array
will be automatically sized to fit the number of instances specified in the static
instance data.

If “StaticPopulation” == “const”, then the static instance data will be specified
with a const qualification. This data is considered read-only, and any PAL
operations writing to these instances are prohibited. Spotlight cannot run with
const classes (agent instrumentation must connect at runtime) so if
“SpotlightEnabled” == “T” for the domain containing “const” classes, the
"StaticPopulation" property for these classes is forced to "TRUE".

Class Modeling Conventions/Rules

- If a value for the "MaxIndex" property is specified, it is up to the
analyst/designer to ensure that this value is at least as large as the number
of instances specified in the static instance data.

- Active classes will not specify their initial state explicitly in the instance data –
they are required to specify their initial state using the initial state
pseudostate on their state diagram.

- The SortKey property and the SORT action language directive are not
supported for static classes.

1

Static Instance Initialization in UML Foundation for C

- If any class in a subtype/supertype hierarchy is static, then all classes in the
hierarchy must be static. (Supertypes with static subtypes automatically
have their "StaticPopulation" values set to "TRUE".)

- CREATE and DELETE operations, lifecycles (state models), and attribute write
accesses are not supported on “const” classes.

Association

Like the class, the association will enjoy a new coloring property
"StaticPopulation" with a default value of FALSE. An association with a
"StaticPopulation" value of "TRUE" will considered static, and cause code to be
generated to support static initialization of the association population.

If an association has a “many” participant that is a statically initialized class, then
that association either must have a full population in the static instance data, or
specify a MaxIndex large enough for all participating instances (dynamic or
static). In other words, an association requires a MaxIndex value if:

- One or both participants are “many” and are statically initialized

- A link for the association is not statically specified for each instance of the
“many”/static participant.

Association Modeling Conventions/Rules

- Every static association must have at least one role phrase.

- The SortKey property and the SORT action language directive are not
supported for static associations.

- LINK and UNLINK operations are not supported on associations with a
participant that is a “const” class.

3.Instance Data Specification
Spreadsheet-Based Data

The instance data is assumed to be in a spreadsheet per domain saved in CSV
format, named with <system_name>_<domain_name>.csv, and following these
layout conventions:

<system name>.<domain
name>

CLASS INFORMATION:

<class name> <attribute name> <attribute name> <attribute name>

1 <attribute value> <attribute value> <attribute value>

2 <attribute value> <attribute value> <attribute value>

. . .

N <attribute value> <attribute value> <attribute value>

<other class info>

2

Static Instance Initialization in UML Foundation for C

ASSOCIATION
INFORMATION:

<association name>

<participant 1
class name> (role
phrase, if any)

<participant 2 class
name> (role
phrase, if any)

<association class
name, if any>

<participant
index> <participant index> <assoc class index>

<participant
index> <participant index> <assoc class index>

. . .

<participant
index> <participant index> <assoc class index>

<other association info>

Table 1: Instance Data Spreadsheet Template

The following conventions apply when building an instance data spreadsheet:

- The first column of class information contains a 1-based array index, used
primarily to identify the class instance in subsequent association link rows.
The user must ensure that these index values start at 1, are unique for each
instance, and that no holes in the array are created by skipping values. The
instances can appear in any order in the class' table.

- Comments describing a class instance row can be specified as a string
starting with "#" in the same row as the instance data in the column
immediately after the last attribute value (please see example). Similar
commenting is available for 1:m or m:m associations (comments in 1:1
associations will not appear in the generated code.

- A blank or comment line (comment in column 1) marks the end of a class’
instances.

- All tables of class instance information must appear before any association
link information

- If an association has only one role phrase, those instance indices must appear
in the second column (as opposed to the third)

- In an association link table column where the participant is a supertype class,
the specific subtype instance is specified by <subtype class prefix> <instance
index>.

- A blank row or comment (in column 1) must appear immediately after the last
instance of a class, or the last link of an association.

- If a literal string value is specified (via “”) then no spaces may appear within
the cell outside of the quotes (the spaces could only be inserted via a text
editor outside of Excel).

The example below specifies the instance population for an updated version of the
CarShuffle example system VehicleHousing domain:

3

Static Instance Initialization in UML Foundation for C

Car

Integer id
vh_location_e location
ServiceHandle clientCallback
void switchAssignedGarage (in Integer context_number)
void moveIn (in Integer input, in ServiceHandle client_callback)
void moveOut (in ServiceHandle client_callback)
void reportArrived ()
void assignGarage (in Integer garage_number)
void unassignGarage ()

GarageDoor

boolean isOpen
boolean isLocked
void open ()
void close ()

Garage

Integer number
Ref<Garage> findMe ()

House

String address

11
A1closes

0..1

0..1

A3

selected

is_currently_occupied_by

*

1
A2

is_sited_at

Figure 1: CarShuffle VehicleHousing Classes

CarShuffle.Vehicle Housing

CLASS INFORMATION:

Car clientCallback id location

1 EMPTY_SERVICE_HANDLE 1 VH_LOCATION_GARAGE

2 EMPTY_SERVICE_HANDLE 2 VH_LOCATION_GARAGE

3 EMPTY_SERVICE_HANDLE 3 VH_LOCATION_GARAGE

4 EMPTY_SERVICE_HANDLE 4 VH_LOCATION_GARAGE

5 EMPTY_SERVICE_HANDLE 5 VH_LOCATION_GARAGE

This is a comment describing the GarageDoors

GarageDoor isLocked isOpen

4

Static Instance Initialization in UML Foundation for C

1 FALSE FALSE # Comment for first door

2 FALSE FALSE

3 FALSE FALSE

4 FALSE FALSE

5 FALSE FALSE

Garage number

1 1

2 2

3 3

4 4

5 5

House address

1 "12 Broad Street, Nashua, NH 22303"

2 "1 Main Street, Wrentham, MA 02093"

This is a general comment

ASSOCIATION INFORMATION:

A1 GarageDoor (closes) Garage

 1 1

 2 2

 3 3

 4 4

 5 5

A3 Car (selected) Garage (is_currently_occupied_by)

 1 1

 2 2

 3 3

 4 4

 5 5

A2 Garage (is_sited_at) House

 1 1 # At NH location

5

Static Instance Initialization in UML Foundation for C

 2 1 # At NH location

 3 2 # At MA location

 4 2 # At MA location

 5 2 # At MA location

Table 2: CarShuffle_VehicleHousing.csv

4.Template Changes and Extensions
Data Schema Generation

If the spreadsheet data alternative is chosen, a Springboard template will be
provided to generate a template CVS file from for the static classes and
association model information. A .bat file will be provided to generate these
domain data templates when the class modeling is complete for a given build.
This template will be generated to
<system_name>_<domain_name>_template.csv so any existing domain data
will not be overwritten. When the template is filled in with actual data it should
be renamed to <system_name>_<domain_name>.csv.

External Tracking Structure for "Many" Side of Association

This feature requires a change to structures generated for UML classes that are
associated to "many" instances (either the "1" side of a "1:many", or both sides
of a "many:many") so the association instance tracking structure is not contained
within the class structure, but instead the class structure only carries a pointer to
the association instance tracking structure.

House

String address

Garage

Integer number
Ref<Garage> findMe ()

*

1
A2

is_sited_at

Figure 2: House->A2->Garage, 1:"many"

In the model fragment above the House has many Garages across A2. In the
current version of UML Foundation for C, the generated code below the
implementation of the A2 instance tracking structure is within the House
structure:

struct VH_House
{

6

Static Instance Initialization in UML Foundation for C

. . .
struct SW_InstanceTable acrossA2_to_is_sited_at;

. . .
};

Figure 3: House – Old Generated Structure

This tracking structure will be moved out of the OI_Context structure, and a
pointer will remain in OI_Context:

struct VH_House
{
. . .

struct VH_Garage** acrossA2_to_is_sited_at;
. . .
};

Figure 4: House – New Generated Structure

Static Instance Module

If the spreadsheet data alternative is chosen, new templates are required to
import and format the instance data from .csv files into C-language initializer
statements. If the XML instance data alternative is chosen, XSL scripts will be
developed to generate these statements.

A new module will be generated for each domain:
<domain prefix>_static_instances.c

to contain these initializers. Each static class will have an array
<domain_prefix>_<class name>_static_instances [<instance count>]

declared and initialized with that class's instance information from the
spreadsheet.

Each static association will have an array

<domain_prefix>_across_A<association number>_<participant name>_<role
phrase>_<participant instance index> [<instance count>]

declared and initialized with the that association's link information FOR A
SINGLE PARTICIPANT INSTANCE from the spreadsheet. In the example
below note that the House is the only class that participates across from the
"many" side of an association, so each instance of the House has it's own A2
link array.

CarShuffle VH Instances

Class Structures

The following code snippets show the VH class structure declarations:

struct VH_Car
{

short int rttiNumber_; /* Defined in <VH>_types.h: VH_OBJNUM_Car */

7

Static Instance Initialization in UML Foundation for C

short int state_;
SW_Incident_handle_t clientCallback;
int id;
vh_location_e location;
VH_Garage_handle_t acrossA3_to_is_currently_occupied_by;

};

Figure 5: Class Structure

struct VH_Garage
{

short int rttiNumber_; /* Defined in <VH>_types.h: VH_OBJNUM_Garage */
int number;
VH_Car_handle_t acrossA3_to_selected;
VH_House_handle_t acrossA2;
VH_GarageDoor_handle_t acrossA1_to_closes;

};

Figure 6: Garage Structure

struct VH_GarageDoor
{

short int rttiNumber_; /* Defined in <VH>_types.h: VH_OBJNUM_GarageDoor */
short int state_;
bool_t isLocked;
bool_t isOpen;
VH_Garage_handle_t acrossA1;

};

Figure 7: GarageDoor Structure

struct VH_House
{

short int rttiNumber_; /* Defined in <VH>_types.h: VH_OBJNUM_House */
struct SW_String address;
struct VH_Garage **acrossA2_to_is_sited_at;

};

Figure 8: House Structure

8

Index-based Instance Identification

5.Additional Example
The following example is provided to illuminate a more complicated example,
including associate classes and supertype participants. It is set in the context of the
CarShuffle_test.VehicleHousing (VH) domain.

PineTree
needleType : Integer

grow()

AppleTree
appleCount : Integer

grow()

Animal
afirstName : String
lastName : String
color : vh_color_e

getColor()
getSh()
getValue()

Tree
height : Real

grow()
<<MBSE Event>> Grow()

0..n0..1

+inhabits
0..n0..1

A10

S5S5

Nest
monthlyRent : Integer

Figure 9: Carshuffle_test.VehicleHousing Class Model (partial)

Object,CarShuffle_test.VH.Animal,StaticPopulation,TRUE
Object,CarShuffle_test.VH.Nest,StaticPopulation,TRUE
Object,CarShuffle_test.VH.AppleTree,StaticPopulation,TRUE
Object,CarShuffle_test.VH.PineTree,StaticPopulation,TRUE
BinaryRel,CarShuffle_test.VH.A10,StaticPopulation,TRUE

Table 3: CarShuffle_test properties.txt

CarShuffle_test.VehicleHousing

between comment

CLASS INFORMATION:

AppleTree appleCount height

1 30 20.5

2 33 16

3 55 71

9

Static Instance Initialization in UML Foundation for C

PineTree height needleType

1 62 8

2 15 2

3 2 2

Varying color Animals

Animal color

1 VH_COLOR_DARK_BROWN

2 VH_COLOR_DARK_BROWN

3 VH_COLOR_BROWN # Wow - something different!

4 VH_COLOR_DARK_BROWN

5 VH_COLOR_BROWN

Nest monthlyRent

1 100

2 100

3 125

4 95

5 101

between comment

ASSOCIATION INFORMATION:

Not all Trees have inhabitants, and not all Animals have a tree

A10 inhabits (VH_Animal) (VH_Tree)
assoc
(VH_Nest)

 1 PineTree 1 1
rel
comment

 2 PineTree 2 2

 3 AppleTree 1 3

 4 PineTree 1 4

 5 PineTree 1 5

Table 4: CarShuffle_test_VehicleHousing.csv

10

Index-based Instance Identification

Static Instance Module

The instance data for the VH domain will result in the following VH_static_instances.c:

#include "sw_conf.h" /* used for configuration information on some platforms */
#include "sys_incl.h" /* project-specific includes */

/*== */
/* Code translated on : Tue Apr 01 10:27:21 2003 */

/* Static instance initialization for VehicleHousing domain
== */
/* INCLUDES: */
#include "sw_base.h"
#include "sw_string.h"
#include "sw_instance_table.h"
#include "sw_incident.h"

#include "VH.h"
#include "VH_objs.h"

/*==*/
/* DEFINITIONS AND FORWARD DECLARATIONS: */

/* Class instance counts */
#define VH_Animal_COUNT 5
#define VH_AppleTree_COUNT 3
#define VH_Nest_COUNT 5

11

Static Instance Initialization in UML Foundation for C

#define VH_PineTree_COUNT 3

/* Static class instance storage */
extern struct VH_Animal VH_Animal_instanceData[];
extern struct VH_AppleTree VH_AppleTree_instanceData[];
extern struct VH_Nest VH_Nest_instanceData[];
extern struct VH_PineTree VH_PineTree_instanceData[];

/* Static association arrays (for "many" side only) */
extern struct SW_InstancePointerTable VH_acrossA10_to_inhabits_table_AppleTree_1;
extern struct SW_InstancePointerTable VH_acrossA10_to_inhabits_table_AppleTree_2;
extern struct SW_InstancePointerTable VH_acrossA10_to_inhabits_table_AppleTree_3;
extern struct SW_InstancePointerTable VH_acrossA10_to_inhabits_table_PineTree_1;
extern struct SW_InstancePointerTable VH_acrossA10_to_inhabits_table_PineTree_2;
extern struct SW_InstancePointerTable VH_acrossA10_to_inhabits_table_PineTree_3;
extern struct SW_InstancePointerTable VH_associated_acrossA10_to_inhabits_table_AppleTree_1;
extern struct SW_InstancePointerTable VH_associated_acrossA10_to_inhabits_table_AppleTree_2;
extern struct SW_InstancePointerTable VH_associated_acrossA10_to_inhabits_table_AppleTree_3;
extern struct SW_InstancePointerTable VH_associated_acrossA10_to_inhabits_table_PineTree_1;
extern struct SW_InstancePointerTable VH_associated_acrossA10_to_inhabits_table_PineTree_2;
extern struct SW_InstancePointerTable VH_associated_acrossA10_to_inhabits_table_PineTree_3;
/*== */
/* CLASS INSTANCE DATA */

/*== */
struct VH_Animal VH_Animal_instanceData[VH_Animal_COUNT] =
/* rttiNumber_, color, A10 -no role- (VH_Tree), associated class VH_Nest */
{

12

Static Instance Initialization in UML Foundation for C

VH_OBJNUM_Animal, VH_COLOR_DARK_BROWN, (VH_Tree_handle_t)&VH_PineTree_instanceData[1-1], &VH_Nest_instanceData[1-1],
VH_OBJNUM_Animal, VH_COLOR_DARK_BROWN, (VH_Tree_handle_t)&VH_PineTree_instanceData[2-1], &VH_Nest_instanceData[2-1],
VH_OBJNUM_Animal, VH_COLOR_BROWN, (VH_Tree_handle_t)&VH_AppleTree_instanceData[1-1], &VH_Nest_instanceData[3-1],
VH_OBJNUM_Animal, VH_COLOR_DARK_BROWN, (VH_Tree_handle_t)&VH_PineTree_instanceData[1-1], &VH_Nest_instanceData[4-1],
VH_OBJNUM_Animal, VH_COLOR_BROWN, (VH_Tree_handle_t)&VH_PineTree_instanceData[1-1], &VH_Nest_instanceData[5-1],

};
/* Support structures for manipulating the above array */
struct SW_InstanceTable VH_Animal_instanceList_storage_ =
{VH_Animal_COUNT, sizeof(struct VH_Animal), &VH_Animal_instanceData, -1, FALSE, 0};
SW_InstanceTable_handle_t VH_Animal_instanceList = &VH_Animal_instanceList_storage_;

/*== */
struct VH_AppleTree VH_AppleTree_instanceData[VH_AppleTree_COUNT] =
/* rttiNumber_, height, A10 -no role- (array table), associated class VH_Nest, appleCount */
{

VH_OBJNUM_AppleTree, 30, &VH_acrossA10_to_inhabits_table_AppleTree_1, &VH_associated_acrossA10_to_inhabits_table_AppleTree_1, 30,
VH_OBJNUM_AppleTree, 33, &VH_acrossA10_to_inhabits_table_AppleTree_2, &VH_associated_acrossA10_to_inhabits_table_AppleTree_2, 33,
VH_OBJNUM_AppleTree, 55, &VH_acrossA10_to_inhabits_table_AppleTree_3, &VH_associated_acrossA10_to_inhabits_table_AppleTree_3, 55,

};
/* Support structures for manipulating the above array */
struct SW_InstanceTable VH_AppleTree_instanceList_storage_ =
{VH_AppleTree_COUNT, sizeof(struct VH_AppleTree), &VH_AppleTree_instanceData, -1, FALSE, 0};
SW_InstanceTable_handle_t VH_AppleTree_instanceList = &VH_AppleTree_instanceList_storage_;

/*== */
struct VH_Nest VH_Nest_instanceData[VH_Nest_COUNT] =
/* rttiNumber_, monthlyRent, A10 part1, A10 part2 */
{

13

Static Instance Initialization in UML Foundation for C

VH_OBJNUM_Nest, 100, (VH_Tree_handle_t)&VH_PineTree_instanceData[1-1], &VH_Animal_instanceData[1-1],
VH_OBJNUM_Nest, 100, (VH_Tree_handle_t)&VH_PineTree_instanceData[2-1], &VH_Animal_instanceData[2-1],
VH_OBJNUM_Nest, 125, (VH_Tree_handle_t)&VH_AppleTree_instanceData[1-1], &VH_Animal_instanceData[3-1],
VH_OBJNUM_Nest, 95, (VH_Tree_handle_t)&VH_PineTree_instanceData[1-1], &VH_Animal_instanceData[4-1],
VH_OBJNUM_Nest, 101, (VH_Tree_handle_t)&VH_PineTree_instanceData[1-1], &VH_Animal_instanceData[5-1],

};
/* Support structures for manipulating the above array */
struct SW_InstanceTable VH_Nest_instanceList_storage_ =
{VH_Nest_COUNT, sizeof(struct VH_Nest), &VH_Nest_instanceData, -1, FALSE, 0};
SW_InstanceTable_handle_t VH_Nest_instanceList = &VH_Nest_instanceList_storage_;

/*== */
struct VH_PineTree VH_PineTree_instanceData[VH_PineTree_COUNT] =
/* rttiNumber_, height, A10 -no role- (array table), associated class VH_Nest, needleType */
{

VH_OBJNUM_PineTree, 62, &VH_acrossA10_to_inhabits_table_PineTree_1, &VH_associated_acrossA10_to_inhabits_table_PineTree_1, 8,
VH_OBJNUM_PineTree, 15, &VH_acrossA10_to_inhabits_table_PineTree_2, &VH_associated_acrossA10_to_inhabits_table_PineTree_2, 2,
VH_OBJNUM_PineTree, 2, &VH_acrossA10_to_inhabits_table_PineTree_3, &VH_associated_acrossA10_to_inhabits_table_PineTree_3, 2,

};
/* Support structures for manipulating the above array */
struct SW_InstanceTable VH_PineTree_instanceList_storage_ =
{VH_PineTree_COUNT, sizeof(struct VH_PineTree), &VH_PineTree_instanceData, -1, FALSE, 0};
SW_InstanceTable_handle_t VH_PineTree_instanceList = &VH_PineTree_instanceList_storage_;

/*== */
/* SUPERTYPE INSTANCE POINTER TABLES */
/* Pointers to all static subtype instances */

14

Static Instance Initialization in UML Foundation for C

struct VH_Tree *VH_Tree_instancePointers[6]=
{

(VH_Tree_handle_t)&VH_AppleTree_instanceData[0],
(VH_Tree_handle_t)&VH_AppleTree_instanceData[1],
(VH_Tree_handle_t)&VH_AppleTree_instanceData[2],
(VH_Tree_handle_t)&VH_PineTree_instanceData[0],
(VH_Tree_handle_t)&VH_PineTree_instanceData[1],
(VH_Tree_handle_t)&VH_PineTree_instanceData[2],

};
struct SW_InstancePointerTable VH_Tree_instanceList_storage_ =
{6, (void**)&VH_Tree_instancePointers, -1, FALSE, 0};
SW_InstancePointerTable_handle_t VH_Tree_instanceList = &VH_Tree_instanceList_storage_;

/*== */
/* ASSOCIATION LINK DATA ("many" side only) */

 /* Not all Trees have inhabitants, and not all Animals have a tree */

/* A10 (Animal side) for AppleTree instance 1 */
struct VH_Animal *VH_acrossA10_to_inhabits_AppleTree_1[1] =
{

&VH_Animal_instanceData[3-1]
};
struct SW_InstancePointerTable VH_acrossA10_to_inhabits_table_AppleTree_1 =
{1, (void**)(&VH_acrossA10_to_inhabits_AppleTree_1), -1, FALSE, 0};

/* A10 (Animal side) for AppleTree instance 2 */
struct VH_Animal *VH_acrossA10_to_inhabits_AppleTree_2[1];

15

Static Instance Initialization in UML Foundation for C

struct SW_InstancePointerTable VH_acrossA10_to_inhabits_table_AppleTree_2 =
{0, (void**)(&VH_acrossA10_to_inhabits_AppleTree_2), -1, FALSE, 0};

/* A10 (Animal side) for AppleTree instance 3 */
struct VH_Animal *VH_acrossA10_to_inhabits_AppleTree_3[1];
struct SW_InstancePointerTable VH_acrossA10_to_inhabits_table_AppleTree_3 =
{0, (void**)(&VH_acrossA10_to_inhabits_AppleTree_3), -1, FALSE, 0};

/* A10 (Animal side) for PineTree instance 1 */
struct VH_Animal *VH_acrossA10_to_inhabits_PineTree_1[3] =
{

&VH_Animal_instanceData[1-1] /* rel comment */,
&VH_Animal_instanceData[4-1],
&VH_Animal_instanceData[5-1]

};
struct SW_InstancePointerTable VH_acrossA10_to_inhabits_table_PineTree_1 =
{3, (void**)(&VH_acrossA10_to_inhabits_PineTree_1), -1, FALSE, 0};

/* A10 (Animal side) for PineTree instance 2 */
struct VH_Animal *VH_acrossA10_to_inhabits_PineTree_2[1] =
{

&VH_Animal_instanceData[2-1]
};
struct SW_InstancePointerTable VH_acrossA10_to_inhabits_table_PineTree_2 =
{1, (void**)(&VH_acrossA10_to_inhabits_PineTree_2), -1, FALSE, 0};

/* A10 (Animal side) for PineTree instance 3 */
struct VH_Animal *VH_acrossA10_to_inhabits_PineTree_3[1];

16

Static Instance Initialization in UML Foundation for C

struct SW_InstancePointerTable VH_acrossA10_to_inhabits_table_PineTree_3 =
{0, (void**)(&VH_acrossA10_to_inhabits_PineTree_3), -1, FALSE, 0};

/* A10 associated class (Animal side) for AppleTree instance 1 */
struct VH_Nest *VH_associated_acrossA10_to_inhabits_AppleTree_1[1] =
{

&VH_Nest_instanceData[3-1]
};
struct SW_InstancePointerTable VH_associated_acrossA10_to_inhabits_table_AppleTree_1 =
{1, (void**)(&VH_associated_acrossA10_to_inhabits_AppleTree_1), -1, FALSE, 0};

/* A10 associated class (Animal side) for AppleTree instance 2 */
struct VH_Nest *VH_associated_acrossA10_to_inhabits_AppleTree_2[1];
struct SW_InstancePointerTable VH_associated_acrossA10_to_inhabits_table_AppleTree_2 =
{0, (void**)(&VH_associated_acrossA10_to_inhabits_AppleTree_2), -1, FALSE, 0};

/* A10 associated class (Animal side) for AppleTree instance 3 */
struct VH_Nest *VH_associated_acrossA10_to_inhabits_AppleTree_3[1];
struct SW_InstancePointerTable VH_associated_acrossA10_to_inhabits_table_AppleTree_3 =
{0, (void**)(&VH_associated_acrossA10_to_inhabits_AppleTree_3), -1, FALSE, 0};

/* A10 associated class (Animal side) for PineTree instance 1 */
struct VH_Nest *VH_associated_acrossA10_to_inhabits_PineTree_1[3] =
{

&VH_Nest_instanceData[1-1] /* rel comment */,
&VH_Nest_instanceData[4-1],
&VH_Nest_instanceData[5-1]

};

17

Static Instance Initialization in UML Foundation for C

struct SW_InstancePointerTable VH_associated_acrossA10_to_inhabits_table_PineTree_1 =
{3, (void**)(&VH_associated_acrossA10_to_inhabits_PineTree_1), -1, FALSE, 0};

/* A10 associated class (Animal side) for PineTree instance 2 */
struct VH_Nest *VH_associated_acrossA10_to_inhabits_PineTree_2[1] =
{

&VH_Nest_instanceData[2-1]
};
struct SW_InstancePointerTable VH_associated_acrossA10_to_inhabits_table_PineTree_2 =
{1, (void**)(&VH_associated_acrossA10_to_inhabits_PineTree_2), -1, FALSE, 0};

/* A10 associated class (Animal side) for PineTree instance 3 */
struct VH_Nest *VH_associated_acrossA10_to_inhabits_PineTree_3[1];
struct SW_InstancePointerTable VH_associated_acrossA10_to_inhabits_table_PineTree_3 =
{0, (void**)(&VH_associated_acrossA10_to_inhabits_PineTree_3), -1, FALSE, 0};

18

	1.Introduction
	2.Analysis Conventions
	3.Instance Data Specification
	4.Template Changes and Extensions
	5.Additional Example

