
©2008 by Pathfinder Solutions

PathMATE Dynamic Tasks

Version 1.0

December 13, 2007

PathMATE Technical Notes

Pathfinder Solutions LLC

33 Commercial Drive, Suite 2

 Foxboro, MA 02035 USA

www.PathfinderMDA.com

888-662-7284

 ii

Table Of Contents

1. Introduction... 1

2. Dynamic Tasks – Overview .. 1

Task Lifecycles .. 1

Service-Based Dynamic Task .. 2

Instance-Based Dynamic Task .. 2

Target Task Resolution with Dynamic Tasking ... 2

Service-Based Resolution ... 2

Instance-Based Resolution ... 2

Dynamic Tasks and Bundles ... 3

Marking Bundles ... 3

Changing Tasks... 4

3. Marking Summary .. 5

4. Dynamic Task Management ... 6

Dynamic Task Mechanisms ... 6

Memory Pools ... 7

PathMATE Dynamic Tasks

1

1. Introduction

This Technical Note describes Dynamic extensions to the PathMATE distributed

deployment and mutex capabilities in support of dynamic tasks. Static distributed

deployment capabilities support the allocation of domains to a fixed set of tasks at

translation time. For computationally intensive actions, it may be necessary to

dynamically allocate the processing of these actions to a separate task to make the

most effective use of multiprocessor platforms.

Dynamic Tasking provides capabilities for the flexible addition and deletion of tasks

or allocation of processing to different tasks at runtime, including:

• Start processing within a newly activated task within an existing process

• Allocate bundles of class instances, as a unit identified through markings, to

tasks.

• Route incidents to dynamic class instances.

• Manage pools of dynamic tasks via a specific realized-code-level interface to

software dynamic task mechanisms.

The capabilities identified in this technical note are intended to support the execution

of class instance behavior (class operations and state actions) to multiple tasks for a

single domain. This may involve the use of mutexes and therefore all the cautions

required in their application apply.

2. Dynamic Tasks – Overview

Task Lifecycles

A static task is started upon system initialization, and is shut down with system

shutdown. Its priority and task local memory pool can be specified uniquely.

The initial processing allocated to this task is allocated at transformation time.

Alternatively, dynamic tasks start when needed, and stop when the allocated

processing is "done". (Processing may be idle, but the task is still active and

allocated.) Dynamic task processing is allocated in two distinct contexts: non-

instance service based and class instance-based. The designer will specify a

maximum number of dynamic tasks that will be created, using the

MaxDynamicTasks system marking. All of these tasks will run at the same

priority and use separately allocated local memory pools which will all have the

same configuration. When using dynamic markings, static tasks may actually

have processing dynamically allocated to them, but the task never becomes

exclusively available for allocation as a DYNAMIC task. In other words, a static

task can take on additional processing for a class or operation, but it is not

dedicated to that additional processing alone as a DYNAMIC task would be.

Task Pools Note: Although the terms "start" and "stop" are used throughout this

section, they may resolve to the allocation of an existing, idle task from a pool

and returning that task to that pool as opposed to asking an RTOS service to

actually create or destroy a task.

PathMATE Dynamic Tasks

2

Service-Based Dynamic Task

When a domain service or non-instance based ("class-based") class service is

marked with a TaskID of "DYNAMIC", a new task is started upon invocation of

the service. A service handle is passed to the new task. The service runs to

completion within the new task, and the task ends when the service returns. It

is the designer's responsibility to ensure that any class instances created within

the processing of this service are allocated to another task.

Instance-Based Dynamic Task

When a class is marked with a TaskID of "DYNAMIC", this indicates a new task

is started upon creation of an instance, and this instance is allocated to this new

task. All instance-based operations and event processing is done in this task.

The task completes when the instance is deleted or when the instance is

allocated to another task.

Target Task Resolution with Dynamic Tasking

For dynamic tasking, non-local dispatches of domain or class service invocations

and event generations to dynamic class instances use a run-time resolution of

the target task. A dynamic task is one that does not have processing allocated

to it at start up time. A dynamic task may be initialized at startup, but left idle

until a dynamic service or class is allocated to it. A dynamic class is a class that

has a dynamic marking on it or is part of a bundle which has a dynamic marking

on it. In other words, a dynamic class is one which may change the task to

which it is allocated at least once during its lifetime. A dynamic class does not

need to be allocated to a dynamic task in order to be considered dynamic. A

dynamic class can be created in either a static or dynamic task and it can

transition to another task either static or dynamic zero or more times in its

lifetime.

Service-Based Resolution

Run-time resolution for "Dynamic" non-instance-based services starts a new

task, and dispatches to this new task. Only services which do not return a

value may be marked as dynamic.

Instance-Based Resolution

An instance of a dynamic class carries its current task id in a data member

called myTask of type PfdTask. Run-time resolution of event generations and

instance-based operation invocations to dynamic class instances invokes a

service PfdTask getTask() which refers to this data member. If this instance is

the root of a Bundle (see below) then all member instances are also allocated to

this task. The service getTask() for members of the bundle traverses the

BundleBranch to call the participant’s getTask() service iteratively until it

reaches the root class, where getTask() returns the root class instance’s value

of myTask. Only instance based operations which do not return a value should

be invoked on a class instance which will be in different task.

PathMATE Dynamic Tasks

3

Dynamic Tasks and Bundles

A set of instances working together in a task can be marked with the Bundle

pattern. The core design assumption is that all class instances within a single

dynamic bundle "instance" have nested lifecycles with related processing.

When the root instance in a dynamic bundle is deleted, all member class

instances of the dynamic bundle are also deleted. When the root instance in a

dynamic bundle changes its task, all the member class instances of the dynamic

bundle also change the task in which they run.

Marking Bundles

A set of classes can be allocated to a single task (static or dynamic) as a unit

when the set conforms to the Bundle pattern. This pattern identifies a tree of

information starting from a root class instance, and branching across

associations to member class instances. The BundleMember marking

propagates down a class hierarchy. A class which is part of a class hierarchy

may only be marked as a BundleMember and not a BundleRoot.

Figure 1: Example Bundle

The bundle pattern requires that:

- A single root class be identified for a bundle.

- All member instances are created and deleted (directly or indirectly) by

the root instance. Member instances must have lifetimes bounded by the

lifetime of the root object.

Member
Root

Branch

PathMATE Dynamic Tasks

4

- All branch associations be identified, and have a multiplicity of 1 on the

side toward the root. (However, having a multiplicity of 1 does not

require that it be part of the bundle.)

- A single branch association link exists between any 2 different member

instances. Any other associations between member classes cannot be a

branch. Bundle patterns are tree subgraphs of the class diagram.

- A class can only participate in one dynamic bundle, but may participate in

multiple bundles that are not dynamic. A dynamic bundle is one in which

the BundleRoot class has dynamic markings.

Bundles have names, used in PIM marking which connect the pieces of the

bundle together. The new markings for the bundle pattern are:

element name

defaul
t
value notes

Class BundleRoot
<blank
>

Non-blank indicates this is the Root class
for the named bundle. When an instance
of this class is created, an instance of the
bundle is also considered to exist. Multiple
values may be specified using a semicolon
as a separator.

Class
BundleMembe
r

<blank
>

Non-blank indicates this is a member class
for the named bundle. It is presumed that
the lifecycle of this class nests within the
root class lifecycle. Multiple values may be
specified using a semicolon as a separator.

Participant BundleBranch
<blank

>

Non-blank indicates this is a branch of the
named bundle. The marking is applied to
the root side of the association. The
multiplicity of this participant must be 1.
Multiple values may be specified using a
semicolon as a separator.

Table 1: Bundle Markings

In the example in Figure 1: Example Bundle, assuming the name of the

Bundle is EntityBundle, the markings are:

Object,Sentry.EntityTracking.Entity,BundleRoot,EntityBundle
Object,Sentry.EntityTracking.Observation,BundleMember,EntityBundle
Object,Sentry.EntityTracking.PredictedZone,BundleMember,EntityBundle
Participant,Sentry.EntityTracking.A2.Entity.has,BundleBranch,EntityBundle
Participant,Sentry.EntityTracking.A5.Entity.entity,BundleBranch,EntityBundle

Table 2: Example Bundle Markings

Changing Tasks

A dynamic class, or dynamic bundle, may be switched from a static task to a

dynamic task or back. To change the task assignment of a dynamic class

instance and any associated member instances (if the class is the root of a

bundle) before running a class operation, mark the class operation with

ChangeTaskID. To change the task assignment at the completion of an entry

state action, mark the state action with ChangeTaskIDWhenDone. If a class has

any operations or state actions with a non-blank ChangeTaskID or

PathMATE Dynamic Tasks

5

ChangeTaskIdWhenDone, the class is considered Dynamic. If an instance is

changing from a Dynamic task, that Dynamic task is stopped. If the class

participates in a bundle it may only use the dynamic task markings if it is the

root class.

3. Marking Summary

element name default value notes

Class BundleRoot <blank>

A non-blank value indicates this is
the root class for a bundle of the
specified name Multiple values may
be specified using a semicolon as a
separator.

Class BundleMember <blank>

A non-blank value indicates this is a
member class for a bundle of the
specified name. It is presumed that
the lifecycle of this class nests
within the root class lifecycle. This
class' task assignment is inherited
from the bundle's root.Multiple
values may be specified using a
semicolon as a separator.

Class TaskID

<if Member, Root's

TaskID, otherwise
domain's TaskID>

Identifies the task to which this
class is allocated.. SYS_TASK_ANY
will allow this class to run locally in
any calling task. DYNAMIC indicates

each new instance is allocated to a
new task.

Class Operation
(instance-based
only)(currently
unsupported) ChangeTaskID <blank>

A non-blank value indicates this
instance is to be changed from its
current task to a new task. This
marking is not valid for classes with
BundleMember marking..

Domain TaskID SYS_TASK_ID_MAIN

Identifies the task to which this
domain is allocated.
SYS_TASK_ANY will allow this
domain to run locally in any calling
task

Domain Service TaskID <domain's TaskID>

Identifies the task to which this
domain service is allocated.
SYS_TASK_ANY will allow this
domain to run locally in any calling
task. DYNAMIC indicates this is
allocated to a new task.

Parameter Stereotype <blank>

A value of "Routing" indicates this is
a Routing parameter, used in
explicit run-time resolution.

Participant BundleBranch <blank>

A non-blank value indicates this is a
branch of a bundle of the specified
name. The marking is applied to
the root side of the association. The
multiplicity of this participant must
be 1. Multiple values may be
specified using a semicolon as a
separator.

State ChangeTaskIDWhenDone <blank>

A non-blank value indicates this
instance is to be changed from its
current task to a new task upon
completion of the state. This
marking is not valid for classes with

PathMATE Dynamic Tasks

6

BundleMember marking.

System MaxDynamicTasks 0
Maximum number of dynamic tasks
in a process.

System
ProcessAddress/<proces
s label> 127.0.0.1

Identifies the IP address of the
processor on which the process
(indicated by the process label in
the property name) runs.

Table 3: Marking Summary

4. Dynamic Task Management

By default, dynamic tasks are created via an RTOS as their processing is started, and

when their processing is completed they are destroyed. Their priority is set by the

dynamic element's task priority. (clarify this? Does this mean that a dynamic tasks

priority will change depending on the element that is allocated to it?)

Alternatively a fixed size pool of tasks can be created at system startup by a call to

SW:InitializeDynamicTasks(count, default_priority). (Is this needed since we have

MaxDynamicTasks) A set of mechanisms are provided to facilitate the management

of this pool. In this case, dynamic tasks are allocated from available (idle) tasks in

the pool, and returned to the pool when their processing is complete. The tasks all

run the same event loop, PfdTask::processOOA().

In either case, RTOS or pools of tasks, the maximum number of dynamic tasks will

be limited by the system property MaxDynamicTasks. The default configuration will

be to have a pool of dynamic tasks. In order to use tasks which are transient set the

compile switch PATH_USE_TRANSIENT_DYNAMIC_TASKS.

Dynamic Task Mechanisms

A DynamicTaskPool design mechanism is provided to manage all dynamic

task requests. A new system property MaxDynamicTasks limits (at

transformation time) the number of both RTOS and pooled tasks which can be

created at run time in a process.

The getNewDynamicTask/releaseDynamicTask methods provide a single

interface for both RTOS tasks and the pooled tasks. If the task cannot be

created it will be treated similar to an out of memory exception, in that an

exception will be raised. However, If a new dynamic task cannot be

allocated the currently executing task will be used, rather than setting the

task context to NULL which would cause a NULL dereference.

PfdTask *getNewDynamicTask(pfdos_priority_e target_priority)

No pool: start an RTOS task of the specified priority

Pool: select an idle task from the pool with the same or a lower priority

as the target_priority and mark it as allocated

releaseDynamicTask(pfdos_task_id_t task)

No pool: deallocate the RTOS task

Pool: mark the task as not allocated.

PathMATE Dynamic Tasks

7

Additional methods support pool-specific operations: (currently

unsupported)

initializeDynamicTaskPool(int task_count, pfdos_priority_e

default_priority) - Start task_count PfdTasks at default_priority. A priority of

SYS_TASK_PRIORITY_LOWEST indicates all tasks can be used for any priority.

(Called from SW:InitializeDynamicTasks)

setTaskPriority(pfdos_task_id_t task, pfdos_priority_e priority) - Set the

priority of the specified task, both within the DynamicTaskPool internal table,

and in the RTOS

Memory Pools

Dynamic tasks will work with task local pools, even though classes may be

created in one task and deleted in another. See the Memory Pools technote

for more information on how task local memory pools are supported.

