

Transferring Data Between Remote
Clients and Analyzed Domains

Running on the Server

 Carolyn Duby

Version 1.2
April 22, 2009

Pathfinder Solutions LLC
33 Commercial Street, Suite 2

 Foxboro, MA 02035 USA

www.PathfinderMDA.com
888-662-7284

 ii

Table Of Contents

1. Introduction.. 3

2. Transfer Object Assembler Pattern ... 3

3. Mapping Analyzed Classes to Transfer Objects...................................... 4
Define Bundles ... 4
Access Transfer Objects in Platform Independent Models 7

4. Feature Details.. 8

5. Markings ... 9
Class ... 9
Participant ... 9
User Defined Type... 9

6. References .. 9

Transferring Data Between Remote Clients and Analyzed Domains
Running on the Server

3

1. Introduction

This paper describes how data transferred between client and server
can be optimized. We have two main concerns:

• Minimizing network traffic between client and server.

• Minimizing data coupling between the client and server.

• Centralizing business logic on the server.

2. Transfer Object Assembler Pattern

The Core J2EE Patterns book describes the Transfer Object Assembler
pattern (pg. 433 – 443). The pattern uses a transfer object
assembler to compose a set of transfer objects and returns the
transfer objects to the client. A transfer object "carries multiple data
elements across a tier" (pg. 415).

When the client needs data from the server, it makes a request. The
server assembles the transfer objects using data from the database
and returns the transfer objects back to the client. Alternatively the
client could get the transfer objects through a subscription service.
The client updates the GUI with the new data.

The transfer objects are basic Plain Old Java Objects (POJOs)
containing only data and implementing the java.io.Serializable
interface. The transfer object assembler is the stateless session bean
generated from the services provided by a domain. Markings in the
model and a CSV configuration file describe how to map data stored in
class instances to transfer objects.

The Transfer Object Assembler has the following positive
consequences:

• Removes business logic from the client tier.

The logic of assembling the transfer objects is centralized on
the server.

• Reduces coupling between client and server

The data stored by the server can change but as long as the
transfer objects stay the same, the client does not need to
change.

• Improves network performance

Reduces the number of roundtrips required for the client to get
the data it needs from the server.

• Reduces client resources

The client makes a single call to access the data rather than
multiple calls.

The Transfer Object Assembler pattern has the following negative
consequences:

Transferring Data Between Remote Clients and Analyzed Domains
Running on the Server

4

• Clients receive a snapshot of server data so the data may
become stale.

3. Mapping Analyzed Classes to Transfer
Objects

Define Bundles

Bundles define which classes to include in the transfer objects.
Bundles are a set of classes interconnected by associations. Each
bundle has a unique name.

A bundle has a root class. The root class may have one or more
branches defined by associations. The branches connect the root to
members. Members may connect via branch associations to other
members forming a tree structure.

A class or association may participate in more than one bundle. Within
the same bundle, a class may be either a root or a member but not
both.

For example, Figure 1: Entity Bundle shows a bundle with the Entity
class at the root in blue. The members of the bundle are shown in
white – Observation and PredictedZone. The branches of the bundle
are shown in black – A2 and A5. Figure 2: Entity Bundle Markings
shows the markings used to specify the bundle.

Transferring Data Between Remote Clients and Analyzed Domains
Running on the Server

5

Figure 1: Entity Bundle

Root

Branches

Members

Transferring Data Between Remote Clients and Analyzed Domains
Running on the Server

6

bundle root
Object,Sentry.EntityTracking.Entity,BundleRoot,EntityBundle
set EntityBundle to a transfer object
Object,Sentry.EntityTracking.Entity,BundleType,EntityBundle=Transfer
bundle members
Object,Sentry.EntityTracking.Observation,BundleMember,EntityBundle
Object,Sentry.EntityTracking.PredictedZone,BundleMember,EntityBundle
bundle branches
Participant,Sentry.EntityTracking.A2.Entity.has,BundleBranch,EntityBundle
Participant,Sentry.EntityTracking.A5.Entity.entity,BundleBranch,EntityBundle

Figure 2: Entity Bundle Markings

Transferring Data Between Remote Clients and Analyzed Domains
Running on the Server

7

Map Bundles to Transfer Objects

After defining the bundles, define how the classes, attributes, and
associations of the bundle map to transfer objects. A Comma
Separated Value (CSV) file defines the mapping between the bundles
and transfer objects. The transformation map generates an initial
spreadsheet in a subdirectory of the generated code. Copy the initial
spreadsheet to the deployment working directory and modify it using a
text editor or Excel.

Each bundle must have a CSV file named <bundle
name>TransferObjects.csv in the deployment working directory where
the properties.txt is located. The CSV file has the following format for
each class:

TransferObject,<class name>,<transfer object name>,<inst filter op>

Attr, <attribute name>,<transfer object field name>

Assoc, <association id>, <transfer object field name>

CSV Field Name Meaning

<class name> The unqualified name of a class which is either a root or
member of the bundle.

<transfer object
name>

The fully qualified name of the transfer object class that
will represent this class.

<inst filter op> Optional. The name of an operation of <class name>.
The operation must be an instance based operation that
returns a Boolean and takes no parameters. If the
operation returns TRUE, the instance will be included in the
transfer object. If the operation returns FALSE, the
instance will be omitted from the transfer object.

<attribute name> The name of the attribute of the class.

<association id> The identifier of the association of the class, i.e. A<N>. If
the association is reflexive (both participants are the same
class) use A<N>.<role_name>.

<transfer object field
name>

The name of the field in the transfer object that the
attribute maps to. If the attribute is to be excluded from
the transfer object, set this column to <exclude>.

Access Transfer Objects in Platform Independent Models

To use a transfer object in a model, define a UML Primitive Type to
hold the bundle in the Domain Types folder of the domain package
containing the classes comprising the bundle. On the Advanced
Properties tab set PathMATE > Base Type to 3 – Handle. Set
PathMATE > External to True.

In the properties.txt file, set the BundleName marking of the user
defined type to the name of the Bundle carried by the type. The

Transferring Data Between Remote Clients and Analyzed Domains
Running on the Server

8

templates set automatically the ExternalType property to the Transfer
Object of the root class of the bundle.

On a domain service, set the return type or an output parameter type
to the user defined type for the bundle. Set the return value or output
parameter to an instance of the bundle root. The templates will
generate the code to convert the bundle to the transfer object.

For example, suppose we defined a primitive type called et_entity_t
and we have a domain service called GetFirstEntity that returns a
et_entity_t, the action language would look something like this:

// get an instance of the root class of the bundle using a
// FIND or other navigation.
Ref<Entity> entity = FIND CLASS Entity;

// convert the entity to its transfer objects
// and return it
RETURN entity;

To define a set of bundles, create a group of user defined types. Set
the return type or output parameter to the group type. Add elements
to the group and then return it.

In our example create the user defined type Group<et_entity_t>.
Suppose we have a domain service called GetAllEntities that returns a
Group<et_entity_t>. The action language would look something like
this:

// create a list of transfer objects
Group<et_entity_t> all_entities;
Ref<Entity> entity;
FOREACH entity = CLASS Entity
{
 // convert entity to its transfer objects
 // add the transfer object to the list.
 all_entities.addBack(entity);
}

RETURN all_entities;

4. Feature Details

This feature builds upon templates already in PathMATE supporting
bundles and CSV files. The templates will generate the following:

• Transfer object Java class definitions

• Java methods to convert class instances into transfer objects

• Invocations of conversion methods when a bundle root class
instance is assigned to its transfer object user defined type

Transferring Data Between Remote Clients and Analyzed Domains
Running on the Server

9

• Initial spreadsheets to define the mappings between bundle
classes and transfer objects

5. Markings

Class

Marking Name Default Value Effect

BundleRoot <blank> A non-blank value indicates that this
class is the root of the named bundle.
If the class is the root of multiple
bundles, use a semicolon separated list
of bundle names.

BundleMember <blank> A non-blank value indicates that this
class is a member of the named
bundle. If the class is a member of
multiple bundles, use a semicolon
separated list of bundle names.

BundleType <blank> The type of bundle rooted in this class.
Consists of a semicolon separated list
of <bundle_name>=<bundle_type>
where bundle_type is either Tasking or
Transfer. Transfer is the default.

Participant

Marking Name Default Value Effect

BundleBranch <blank> A non-blank value indicates that this
participant is a branch of the named
bundle. If the participant is a branch of
multiple bundles, use a semicolon
separated list of bundle names.

User Defined Type

Marking Name Default Value Effect

BundleName <blank> A non-blank value indicates that this
user defined type is a transfer object
for the specified bundle name.

6. References

Alur, Deepak, John Crupi, and Dan Malks. Core J2EE Patterns Best
Practices and Design Strategies (Second Edition). Prentice Hall PTR,
Upper Saddle River, NJ, 2003.

Transferring Data Between Remote Clients and Analyzed Domains
Running on the Server

10

Burke, Bill and Richard Monson-Haefel. Enterprise JavaBeans 3.0
(Fifth Edition). O'Reilly, Cambridge, 2006.

