
PathMATE Modeler’s Guide

Model Driven Architecture with
Rational Rose

Version 1.7

December 31, 2004

PathMATE™ Series

Pathfinder Solutions LLC
33 Commercial Drive, Suite

Foxboro, MA 02035 USA

www.PathfinderMDA.com

508-543-7222

Copyright © 2004 by Pathfinder Solutions

- ii -

Table of Contents

1. Introduction . 1

2. General Procedures . 2
Product Installation . 2
Model Conversion . 4
Model Creation . 6

3. Modeling . 8
Domain Modeling . 8
Scenario Modeling . 11
Class Modeling . 13
State Modeling . 15
Action Modeling . 19
User Defined Types . 22
Constants . 23

4. Generate Code and Reports . 25
Generate Interactively . 25
Generate from a Batch File . 26

5. Rename Analysis Elements . 27
Options Dialog . 28
Rename Dialogs . 30

6. User Defined Properties . 36
Create a Rose Add-In . 36
Make Your Add-In Properties Accessible 37
Conventions for User Defined Properties 37
Additional Information . 38

7. Rose Issues . 39
Documentation Diagrams . 39
Active and Selected Diagrams . 39

A. PathMATE Menu Items . 40

- iii -

Preface

Audience

The PathMATE Modeler’s Guide is for software engineers who want to
use PathMATE to create high performance systems. Users of this guide
should be familiar with the Unified Modeling Language (UML).

Related Documents

These PathMATE documents are available at www.PathfinderMDA.com,
or from your Pathfinder account manager:

• PathMATE Transformation Engine User Guide

• Platform-Independent Action Language

• PathMATE Quick Start Guide

Conventions

The PathMATE Modeler’s Guide uses these conventions:

• Bold is for clickable buttons and menu selections.

• Italics is for screen text, path and file names, and other text that
needs special emphasis.

• Courier denotes code, or text in a log or a batch file.

• A NOTE contains important information, or a tip that saves you
time.

How to Use this Guide

If you are not familiar with the PathMATE toolset, read the overview
that begins on page iv. If you have not installed the PathMATE toolset
on your computer, obtain a password from your account manager and
download the software from www.PathfinderMDA.com. After
installation, use the PathMATE Quick Start Guide to become familiar
with the software tools.

http://PathfinderMDA.com

PathMATE Overview

This overview introduces Model Driven Architecture (MDA) and the
PathMATE™ tools that make MDA work. MDA and PathMATE move you
from writing and debugging code to developing and testing the logic of
a high performance system. Over years of rigorous refinement in
several industries, PathMATE tools have proven their value in rapid and
effective software systems development.

PathMATE Toolset
The PathMATE Model Automation and Transformation Environment
includes all the tools required to transform your MDA models into
high-performance systems. See the PathMATE workflow in the figure
below.

PathMATE Workflow
- iv -

PathMATE Overview
The three parts of the PathMATE toolset cooperate to turn your models
into executable systems:

• Transformation Maps – Generate C, C++, or Java software with
off-the-shelf Transformation Maps, or create custom maps to drive
output for other languages or specific platforms.

• Transformation Engine – The Engine transforms
platform-independent models into working, embedded software
applications.

• Spotlight – Verify and debug your application logic with Spotlight,
the most advanced model testing environment available.

No other MDA transformation environment offers a more open or
configurable set of development tools, designed to meet the
requirements of systems engineers.

How PathMATE Works
Use Model Driven Architecture to build complex embedded systems
that meet rigorous standards for speed and reliability. MDA works
because it separates what the system does from its deployment on a
particular platform. PathMATE adds these advantages:

• Greatest architectural control – A highly configurable
Transformation Engine enables you to optimize output for
resource-constrained platforms.

• Clean separation of model and code – Conforming to the MDA
paradigm, PathMATE models contain no implementation code.
That gives you fast and flexible deployment and migration
capabilities.

• Configurable, target-based model execution and testing –
Preemptively eliminate platform-specific bugs, minimize quality
assurance resources, and accelerate development.

• Lowest cost of ownership – Integrate PathMATE with your existing
UML editor. Build on your previous investment in training and
software.

• Speed – Even large transformations take just seconds with
PathMATE. That enables highly iterative model development, and
rapid transformation and test cycles.

Try the demonstration software available at www.PathfinderMDA.com
to get started quickly and easily.
- v -

http://www.PathfinderMDA.com

- 1 -

1. Introduction

This guide explains how to use Rational Rose to create UML™ models
that you can export to the PathMATE Transformation Engine. The
Engine transforms the semantic information captured in the models
into formatted documentation, HTML, XML, compilable source code, or
any other ASCII form.

The following sections take you step by step from updating your Rose
installation with the PathMATE for Rose add-in, through creating and
maintaining a Platform Independent Model. This guide assumes that
you are familiar with Model Based Software Engineering: Rigorous
Software Development with Domain Modeling, available from
www.PathfinderMDA.com.

In order to gain full benefit from the PathMATE toolset, you should
become fluent with PathMATE’s MDA process. This process achieves the
goals of the OMG’s Model Driven Architecture (MDA) initiative with a set
of proven techniques supported by powerful and flexible technology.
Pathfinder Solutions offers training in MDA and domain modeling for
practitioners, and can provide highly experienced consultants to ensure
your success.

http://www.pathfindermda.com/

2. General Procedures

This section contains general procedures for the following operations:

• Product installation

• Model conversion

• Model creation

Product Installation
Before you attempt to capture PathMATE models with Rose, install
Pathfinder’s PathMATE for Rose.

If you upgrade from Pathfinder's UML Essentials product, please see
important information about how to convert models in the section
below.

Set the Rational Rose CURDIR Symbol

The sample models and models that you create using Rose .cat files
require that you define the CURDIR (current directory) symbol. To
define the symbol:

1. Start Rational Rose.

2. Click File > Edit Path Map… in the top menu bar.

3. The Virtual Path Map box opens.

4. Enter CURDIR in the Symbol field.

5. Enter & in the Actual Path field and click Add.

6. The new mapping appears under Virtual Symbol to Actual Path
Mapping.

7. Click Close to close the box.

NOTE
Not having this symbol set properly may cause PathMATE
sample models to load incorrectly.
- 2 -

General Procedures
Text Editor for PAL and Type Files

The Rose menu items open text files with the .pal and .typ extension
that define the action language and user defined types. By default,
these files open in Notepad. The procedures below explain how to
associate your favorite text editor with the .typ and .pal extensions in
the common Windows operating systems.

Windows 98 and NT

In Windows Explorer, select View > Options > File Types in the top
menu bar.

1. Click New Type.

2. In the New Type dialog, enter the file extension PAL and under
the action box click New.

3. In the New Action dialog enter the action Open and specify the
full path name of the editor program you would like to use for
editing action text files.

NOTE
If you are not sure what to enter, find an existing extension
that opens with your favorite text editor and use the same
settings.

4. Repeat directions above with the TYP extension.

5. Click OK to close each open Explorer dialog box.

Windows 2000

In Windows Explorer, select Tools > Folder Options > File Types.

1. Click New.

2. In the Create New Extension dialog, enter the extension PAL.

3. Click the OK button to close the New Extension dialog.

4. Select the PAL extension in the Registered File Types list box.

5. Click the Change… button. Alternately, you may select the
Advanced button if the selected application requires DDE
settings.

6. In the Open With dialog, select the application that you would
like to use to open PAL files.

7. Click OK to close the Open With dialog.

8. Repeat directions above for the TYP extension.

9. Click Close to close the Folder Options dialog.
- 3 -

General Procedures
Model Conversion
If you created models using UML Essentials for Rose version 4.03.020
or earlier, you will need to convert your models to PathMATE. Your
models are converted automatically when you generate code or
generate reports, or when you run the rose_convert program. On
conversion, the following changes take effect:

• The PathMATE tab replaces the MBSE tab in all Specification boxes.

• Properties specified on the MBSE tab are copied to the PathMATE
tab.

• Identifier attributes are indicated by setting the Identifier
stereotype rather than setting the Identifier property on the MBSE
tab to True. The PathMATE tab does not have an Identifier
property.

• The MBSE Event stereotype on Operations is renamed to Event.

NOTE
Models converted to PathMATE are not compatible with UML
Essentials releases.

Preparing Models for Conversion

Locate the models that require conversion. Make sure that the .mdl file
and any .cat files that the model references are writable. If you are
using a configuration management system, check out the models that
require conversion. If the model file or one of its subunits is not
writable, conversion reports an error.

Conversion during Generation

To convert the model by generating, open the model file in Rose. Select
any of the Create > PathMATE Generate menu items. The PathMATE
Confirm Conversion dialog appears:

Click OK to start the conversion. If you click Cancel, the model will not
be converted and generate will fail.
- 4 -

General Procedures
If the model file or any of its subunits are read-only, the PathMATE
Conversion Error dialog appears:

Click OK. Generation will fail. Using the Windows File Explorer or your
configuration management tool, unlock the listed files. For your
convenience, a full list of the locked files may be found in the
conversion log file. The log file is located in the same directory as the
model and is called <model_name>_convert.txt.

If the conversion succeeds, the model generation process will begin.
The conversion utility will automatically save the model.

Converting with rose_convert Program

If you have a number of models to convert, use the rose_convert
program. From the DOS prompt or from a batch file use the following
command line:

start /wait rose_convert <model path>.mdl

The /u option to rose_convert will automatically clear the read-only
attribute on the .mdl file and any subunit that it references. If you use a
configuration management system that requires you to check out files,
check out the model file and any subunits that it references.

After running the rose_convert program, check the log files for errors.
Errors in the command line options and PathMATE licensing will be
reported in the PathMATERoseConvert.log file located in the directory
from which rose_convert was run. Errors detected while converting the
model will be reported to a log file called <model_name>_convert.txt,
located in the same directory as the .mdl file.
- 5 -

General Procedures
Model Creation
Rose stores all diagram, data dictionary, and description information for
a model in a single file with a .mdl extension. Domains and subsystems
may be stored separately from the .mdl file in a .cat file. See the
section on the domain repository for more information about how to
use .cat files.

All the tools you need for analysis entry in Rational Rose become
available when you install the PathMATE for Rose add-in. You must
create a model and set it up properly before analysis entry can begin.

Files and Subdirectories

The PathMATE product works with files in addition to the Rose model
file. The directory containing the Rose model file is considered the
target directory. Relative to the target directory, Pathfinder add-in
menu items will create and use the following files and subdirectories:

• .\diagrams – transforming a Rose model creates a .wmf file for
each Analysis diagram for later use with formatted document
generation, and places it in this subdirectory.

• .\operations – PathMATE Open Action creates and opens class
operation action language files in this subdirectory.

• .\state_actions – PathMATE Open Action creates and opens
state action language files in this subdirectory.

• .\types – PathMATE Open Types creates and opens user defined
type declaration files in this subdirectory.

• ..\project\cpp\gencpp.bat – PathMATE Generate > C++
creates gencpp.bat the first time you invoke the command.
PathMATE Generate > C++ also runs gencpp.bat to generate
compilable C++ code.

• ..\project\java\genjava.bat – PathMATE Generate > Java
creates genjava.bat the first time you invoke the command.
PathMATE Generate > Java also runs genjava.bat to generate
compilable Java code.

• ..\reports\genreports.bat – PathMATE Generate > Report
creates genreports.bat the first time you invoke the command.
PathMATE Generate > Report also runs genreports.bat to generate
model-specific documentation.

• <system name>.xml – This file is XMI data for your model, and is
created/updated whenever you run a PathMATE Generate
sub-menu item. It is the Analysis import vehicle for the PathMATE
Engine. This file also contains a copy of each action file, so even if
the only change is in an action file, you must still run a PathMATE
Generate sub-menu item.
- 6 -

General Procedures
Once users are comfortable with the Rose environment, they are
encouraged to integrate their own menu items to generate other
reports, code, HTML, or anything else to suit their needs and
preferences.

Diagram Documentation Blocks

We recommend that all diagrams be annotated with a text note that
contains basic information, such as author and version information.

Analysis Element Names

Use legal action language identifiers when naming analysis elements
such as classes, association roles, operations, attributes, and states. A
legal action language identifier is a letter followed by a letter, a number,
or a period.
- 7 -

3. Modeling

Section 3 on modeling covers the following topics:

• Domain modeling

• Scenario modeling

• Class modeling

• State modeling

• Action modeling

• User defined types

• Constants

Domain Modeling
To start a new domain chart:

1. In the Rose browser on a new model, select the package to be
used as the root package for the system. Logical View is the
suggested package to be used as the root package.

2. If the root package is to be a package other than Logical View,
right-click on the package and select Open Specification. In
the stereotype field enter system.

3. In the Rose browser, expand the root system package.

4. Rename Main with the same name as the system. This diagram
is now the Domain Chart.

5. Add domains by adding UML packages. All UML packages added
to the system package will be regarded as a domain and must
follow the rules defined for a domain.
- 8 -

Modeling
To enter domain information:

• Open: For each new domain, select its symbol, right-click, and
select Open Specification in the pop-up menu.

• Description: Be sure to enter a domain description in the
Documentation field on the General tab.

• Prefix: Enter a Prefix on the PathMATE tab – select the Prefix line,
then left click in the Value column on this line. Enter the domain
prefix in the provided sub-window, and click Edit Set. If you do not
set a prefix, the domain prefix will be the same as the domain
name.

• Analyzed: Set the Analyzed property on the PathMATE tab to False
for all domains that are realized. When the Analyzed property is
set to false, all classes in this domain except the Services class
representing the domain interface will be ignored when extracting
to XMI. In addition all action language is ignored when Analyzed is
false.

• Other: You may ignore the Detail and Files tabs.

Domain Symbols and Requirements Flow

Place the most abstract domains at the top of the domain chart. Use
the dependency arrow to show the flow of requirements from
higher-level domains to lower-level domains. Select the Dependency
arrow symbol from the palette, left-click in the upper domain, then
drag the dependency into the lower domain.

NOTE
It may appear on the diagram that the dependency arrow is
not connected to the lower level or server domain. This is only
a diagram presentation issue and will not cause any code or
report generation problems.

Class Diagram

Double-click a domain’s package symbol in the domain chart to open its
class diagram – this is initially called Main – rename it to the domain
name.

Domain Services

To define the domain services available for a domain:

1. Open the Class diagram for the domain.

2. Create a new class in this class diagram.

3. Rename it in the browser with the name Services to avoid
dragging in a services class from another domain.

4. Specify the prefix interface for this class.
- 9 -

Modeling
5. Add domain services as operations of this class.

6. To edit the action language file for an operation, select the
operation in the Rose browser, right-click, and select PathMATE
Open Action.

See Creation of Action Language Files on page 20 for more
information about how to create PAL files.

Add Subsystems

A domain may be partitioned into a number of subsystems. To add a
subsystem, select the domain package in the browser. Right-click and
select the New > Package menu item. A new package inside the
domain will be added. When adding a class diagram for the subsystem,
name the class diagram the same as the subsystem name.

When adding other supporting diagrams such as Use Case diagrams,
Scenarios, and other Class Diagrams, name the support diagram with
the prefix of the top level domain followed by a period, followed by any
other text.

When using the Engine, the support diagrams located in the domain
package will be in the list of support diagrams associated with the
domain. Support diagrams located in the subsystem package will be in
the list of support diagrams associated with the subsystem. Thus to get
the entire list of support diagrams for the domain, any templates must
traverse the list of child subsystems as well as the domain support
diagrams.

A subsystem may be stored separately from the model in a .cat file for
easier version control. To extract a .cat file, right-click on the
subsystem in the browser and select Units > Control in the pop-up
menu. By default, the PathMATE Generate and PathMATE Open menu
items will look for the PAL files for state actions, transition actions,
operations, and domain services in the support file directory for the
domain. To locate the PAL files relative to the subsystem .cat file, open
the specification for the subsystem and set the PALLocation property on
the PathMATE tab to SubsystemRelative. The PALLocation property
applies to the subsystem and all uncontrolled child subsystems.

Domain Repository

The analysis for each analyzed domain may be located entirely in the
system-level model (.mdl file), or it may be separated by domain. To
separate a domain, export the domain to a Rose category file (.cat).
The system model file then has a link to the <DomainName>.cat file.

To extract a .cat file, right-click on the domain in the browser and select
Units > Control. PathMATE generate and open menu items will look for
the .pal and .typ files in a directory relative to the .cat file. If the .cat
and .mdl files are in different directories, move the .pal and .typ files
for the controlled domain from the directories relative to the model to
the directories relative to the .cat file. To locate all the PAL files and
type files for the controlled domain, search for <domain_prefix>*.pal
- 10 -

Modeling
and <domain_prefix>*.typ using Windows Explorer. Alternately, open
the package specification and set the PALLocation property on the
PathMATE tab to SystemRelative.

Scenario Modeling
Scenario Modeling is a powerful technique, either at the system level
where you create the interactions among domains, or at the domain
level where you create the interactions among the classes in the
domain.

Scenario models are represented in UML by either sequence or
collaboration diagrams. The instructions that follow are for creating
sequence diagrams. To create a corresponding collaboration diagram in
Rose, press the F5 key.

Create a Sequence Diagram

1. Select the system package (Logical View) or a specific domain in
the browser.

2. Right-click and select New > Sequence Diagram.

3. Name the diagram either:

• <system name>.<scenario name> for system-level scenarios
(under system package), or

• <domain prefix>.<scenario name> for domain-level scenarios
where <domain prefix> is the prefix of the parent domain
package under the system package.

4. Open the scenario diagram.

Alternatively, system scenario diagrams may be added to packages
which are not in the system package.

• Select the package containing the diagrams. The diagrams may
be nested in a package in the selected package.

• Name the diagram <system name>.<scenario name>

• Right-click on the package and select Open Specification. On the
PathMATE tab, set the SupplementalDiagrams property to True.

Describe the Scenario

Add a Note to capture the detailed Preconditions for the scenario,
another Note for expected Postconditions, and a third note for a general
Description.
- 11 -

Modeling
Add Domain Entity

1. Place an Object on the chart.

2. Select the Object, right-click and select Open Specification.

3. Enter the domain’s prefix as the Name.

4. Select the domain’s Services class from the Class pick list.

NOTE
This action requires having created a services class on the
domain’s class diagram.

Add Class Entity

1. Place an Object on the chart.

2. Select the Object, right-click and select Open Specification.

3. Enter a unique instance Name – for example, if this class has an
identifying attribute, provide the value of this attribute.

4. Select the appropriate class from the Class pick list.

Add Inter-Domain Interaction (System-Level Scenario)

1. Select Object Message from the palette.

2. Left-click in the originating lifeline.

3. Drag and Release in the receiving lifeline.

4. Select the newly placed interaction.

5. Right-click and select from the list of defined services or select
<new operation> to create a new service.

Add Inter-Class Interaction (Domain-Level Scenario)

1. Select Object Message from the palette.

2. Left-click in the originating lifeline.

3. Drag and Release in the receiving lifeline.

4. Select the newly placed interaction.

5. Right-click and select from the list of defined operations, or
select Open Specification… and in the Name field enter an event
name, Create, Delete, or call <service handle name>.
- 12 -

Modeling
Class Modeling
Follow these procedures to construct a class diagram.

Class Modeling for a Domain

Double-click on a domain’s package symbol on the domain chart to
open its class diagram. The class diagram is initially called Main. Or,
create/open from the browser under its domain package.

Class Properties

When completing the definition for each class, specify:

1. Type a brief description of the class in the Documentation field
of the General tab.

2. Specify a prefix in the PathMATE tab.

3. Ignore the Detail, Relations, Components, Nested, and Files
tabs.

Specify Attributes

 To specify attributes on the class properties Attributes tab:

1. Right-click in free space in the list window.

2. Select Insert.

3. Type the attribute name.

4. Right-click the new attribute

5. Select Specification….

6. Specify: Name, Type, Initial Value, and Documentation in the
General tab.

7. If necessary, select the Identifier stereotype on the General tab
to specify that the attribute is an identifier.

If an attribute is an identifier, some designs display the attribute
value in the list of classes in the Spotlight debugger. The default
setting is that the attribute is not an identifier.

8. Ignore the Detail tab.

Specify Class Operations

The procedure used to specify class operations on the class properties
Operations tab is similar to the procedure used to specify attributes on
the Attributes tab.
- 13 -

Modeling
Add Association

1. Select the Unidirectional Association tool from the palette.

2. Left-click in one participant of the association and drag the
association line to the other participant.

3. Right-select Open Specification or double-click the association
line to open the Specification box.

4. Name the association using A<number>, where <number> is
unique within the domain.

5. Provide role names as appropriate in Role A and Role B on the
General tab.

6. Describe the association in the Documentation field on the
General tab.

7. Specify participant multiplicity on the Role A Detail and Role B
Detail tabs.

8. Ignore the Role A General and Role B tabs.

Subtype/Supertype (Inheritance)

For inheritance relationships, use the Generalization arrow:

1. Start by clicking in a subtype and dragging to the supertype.

2. Continue drawing generalization arrows by clicking in a subtype
and dragging to the first generalization arrow.

3. Name all legs the same, using S<number>, where <number> is
unique within the domain.

4. Describe the relationship in the Documentation field on the
General tab.

Realization Relationship

For realization relationships, use the Realize arrow tool:

1. Start by clicking in the class that realizes the interface and
dragging to the interface class.

2. Continue drawing realization arrows by clicking in the classes
that realize the interface and dragging to the interface.

NOTE
Rose will not allow you to terminate a realization relationship
at the first realization relationship arrow as you can do with
Generalization arrows.

3. Name all legs the same, using S<number>, where <number> is
unique within the domain.

4. Describe the relationship in the Documentation field on the
General tab.
- 14 -

Modeling
State Modeling
To create a new state model, select the class it will belong to,
right-click, and select Sub Diagrams > New Statechart Diagram.

New State

When adding a state, place a state symbol on the diagram, and enter
its name:

1. Select the symbol.

2. Double-click on the state, to open the Specifications dialog.

3. Describe the state in the Documentation field on the General
tab.

Add action summaries on the Action tab:

1. Right-click on the list box in the Action tab.

2. Select Insert.

3. A new action will be inserted into the list.

4. Double-click on the new action to display the Action
Specification.

5. Select OnEntry from the When combo box.

6. Select Action from the Type combo box.

7. Type a short description of the action in the Name field.

8. Click OK to add the new action.

Entry/Exit Actions

Open the action language file for the entry or exit action by:

1. Select the proper state.

2. Right-click in the diagram.

3. Select PathMATE Open Entry Action or PathMATE Open Exit
Action.

See Creation of Action Language Files on page 20 for more
information about how to create PAL files.
- 15 -

Modeling
Transition Actions

Open the action language file for a transition action by:

1. Select the transition line.

2. Right-click in the diagram.

3. Select PathMATE Open Action.

See Creation of Action Language Files on page 20 for more
information about how to create PAL files.

When you extract the model, the action in the PAL file overrides the
action specified on the diagram. If you did not create a PAL file via
PathMATE Open Action, extract uses the transition action on the
diagram. To specify a transition action on the diagram, select the
transition, open the specification, select the Detail tab, and set the
Action field.

Guard Expressions

To specify a guard expression:

1. Select the transition line.

2. Open the Specification box.

3. Select the Detail tab.

4. Set the Guard Condition field.

Update All Actions on a Statechart

To update the entry, exit, and transition actions on a statechart with
actions from PAL files:

1. Cancel all selections on the diagram.

2. Right-click in the diagram.

3. Select PathMATE Update Actions.

State entry/exit and transition actions updates the appropriate
state diagram symbol with the lines in the corresponding PAL file using
the following algorithm:

1. If no lines are marked, then all lines in the action will be
included in the action summary.

2. Otherwise only marked lines will be included in the action
summary.

3. Lines starting with //! will be excluded from the Action
Summary.

4. Leading comment characters //# or // will be stripped from
explicitly marked lines.

5. If a line is not explicitly marked, the line will appear as it is in
the PAL file.
- 16 -

Modeling
Lines of a PAL file may be marked as Action Summary lines by:

• Starting the line with a //# comment.

• Inclusion between //! STATE ACTION SUMMARY and //! END
SUMMARY. If only the beginning comment is found, the marked
region starts at the begin mark and extends to the end of the file.
If only the end comment is found, the marked region begins at the
start of the file and extends to the end marker.

When both forms of marking are used together, all lines marked by
either manner are included in the action summary.

NOTE
Due to a Rose limitation, updated transition actions do not
appear in the diagram until the model is saved, closed, and
reopened.

State symbols will resize if the updated state action is larger than the
previous state action. Update the state actions before doing any
detailed layout. To lay out the diagram quickly, select Format > Layout
Diagram in the Rose top menu bar.

Update Selected Actions

To update a selected set of entry, exit, or transition actions, select one
or more states or one or more transitions. Right-click and select
PathMATE Update Action. The instructions for importing all state and
transition actions above describe the algorithm used to create the
action summary from a PAL file.

NOTE
As above, updated transition actions do not appear in the
diagram until you save, close, and reopen the model.

Ignored or Deferred Events

Capture event ignored and event deferred information via the Ignored
and Deferred properties on the state PathMATE tab. Use a semi-colon
separated list (no newlines).

Superstate

To create a superstate, simply place substates within it.
- 17 -

Modeling
Define Event

Due to limitations in the Rose state modeler, events need to be defined
as operations of the destination class:

1. Name the operation with the event name (leave off the
destination class prefix and the colon).

2. Select Event as the operation’s Stereotype on the General tab.

3. Define event parameters as input parameters.

4. Use no return data type.

NOTE
See section below on updating event arguments for
instructions on how to automatically update the event
arguments displayed on the state model.

Use Event

Events are referenced from transition based on naming:

1. Add the proper transition to the state model.

2. Right-click on the transition and select PathMATE Select Event
Spec.

3. Select the appropriate event from the list of defined events.

Update Event Arguments on State Model

To update the event arguments displayed on the state transition
diagram:

1. Open the state model.

2. Right-click in empty space with no symbols selected.

3. Select the PathMATE Update Event Args menu option.

Open Event Specification

To open the specification for an event:

1. Select the transition line, not the event name, in the Statechart
diagram that contains the event.

2. Right-click in the diagram.

3. Select PathMATE Open Event Spec in the pop-up menu. The tool
opens the Specification box for the operation that has the same
name as the event and the stereotype event. If no event is
defined, the tool creates the event and opens the newly created
event specification.
- 18 -

Modeling
Check State Model

To check a state model:

1. Open the state model.

2. Maximize the diagram window.

3. Right-click in empty space with no symbols selected.

4. Select the PathMATE Check menu option.

The tool will check the state model and interactively prompt you
to correct errors that it detects.

When an error is detected, the item with the error is selected.
You can adjust the zoom factor by pressing the Zoom In button
to make the diagram bigger or the Zoom Out button to make
the diagram smaller. Select one of the options to resolve the
error or Skip to skip the error. Click Cancel to stop the error
check. Any errors that are not resolved interactively are
captured in the Rose Error Log. To display the error log, select
the Window > Log menu item.

Action Modeling
Action modeling (for states and services) creates text files in
subdirectories of the model directory as described in Model Creation on
page 6. You may choose your favorite editor to associate with the .pal
action language text files. If you have not yet done so, please follow the
instructions in the installation section for associating your favorite
editor with the .pal file extension.

• To open a service action body: Go to the Rose browser and select
the service you want to edit. Right-click and select PathMATE
Open Action.

• To open a state action body: Go to the Rose browser and select
the state you want to edit. Right-click and select PathMATE Open
Entry Action to edit the entry or exit action.

• To open a system initialization action: Deselect all symbols on any
diagram. Right-click on empty space in any diagram and select
PathMATE Open System Init to edit the system initialization
action.

• To open a domain initialization action: Select a domain package in
the browser. Right-click and select PathMATE Open Domain Init to
edit the domain initialization action. Alternately, deselect all
symbols on a diagram scoped to a domain package. Right-click on
empty space and select PathMATE Open Domain Init.
- 19 -

Modeling
Creation of Action Language Files

If you do not have the Auto Create File option enabled, a dialog box
asks you to confirm creation of the file (Figure 2). Click Yes to create
the file specified and open it in the text editor. Click No to skip creation
of the file.

Figure 3-1. Create Support File? Dialog Box

NOTE
If you want to create action language files without prompting,
check Don’t show this dialog again. Always create support file.
The next time you open an action language file that doesn't
exist, the file is created automatically. To change the Auto
Create File option, select Tools > PathMATE Options.

When the action file is initially created, a header comment describes
the context for the action. You may delete all comments prefaced by
//!. If you do not delete the comments, the context will be
automatically updated each time you open the action language file and
the file is writable. If you do not want the header comments to update
automatically, select Tools > PathMATE Options and remove the check
from the Auto Update Header option.
- 20 -

Modeling
Storage of Action Language Files

Action files are stored in their corresponding support files
subdirectories. File names connect files to their analysis elements.

• system initialization: <system support dir>/init/<system
name>.pal

• domain initialization: <domain support dir>/init/<domain
prefix>.pal

• domain service: <subsystem support dir>/operations/<domain
prefix>_<service class prefix>_<service name>.pal

• class service: <subsystem support dir>/operations/<domain
prefix>_<class prefix>_<service name>.pal

• state entry action: <subsystem support
dir>/state_actions/<domain prefix>_<class prefix>_<state
name>_entry.pal

• state exit action: <subsystem support
dir>/state_actions/<domain prefix>_<class prefix>_<state
name>_exit.pal

• state transition actions: Single-line transition actions may be
specified using the built-in Rose mechanisms.

Select the transition, open the Specification, select the Detail tab,
and use the Action field.

If a more complicated transition action is required, use a PAL file
via the transition menu item PathMATE Open Action.

The PAL file is stored in <subsystem support
dir>/state_actions/<domain prefix>_<class prefix>_<source
state>_<dest state>_<trigger>_<internal Rose transition
identifier>_trans.pal.

If a PAL file is specified, extract uses the action language in the
file, not in the action field on the diagram.

• state transition guard expressions: Guard Expressions are not
stored in PAL files – they are stored using built-in Rose
mechanisms. To capture/update these, select the transition, open
the Specification, select the Detail tab, and use the Guard
Condition field.

• system support directory – PAL and type files at the system level
are stored relative to the system .mdl file.

• domain support directory – If the domain is controlled, PathMATE
stores the domain’s .pal and .typ files relative to the .cat file. If the
domain is not controlled or the PALLocation property for the
domain is set to SystemRelative, PathMATE stores the files relative
to the .mdl file.

• subsystem support directory – PAL files at the subsystem level
may be stored relative to the domain or subsystem directories.
- 21 -

Modeling
If a subsystem is controlled in a .cat file, the PAL files are stored
relative to the location of the .cat file if the PALLocation property is
set to SubsystemRelative and in the domain location if the
PALLocation property is set to DomainRelative or SystemRelative.

If the subsystem is uncontrolled, the PAL files are located using
the rule of the closest controlled subsystem or domain.

The following table summarizes key information for the various kinds of
PAL files:

Table 3-1. Summary Information for PAL Files

User Defined Types
User defined types are specified in a text file stored in the types
subdirectory of your model. You may define types that are aliases to an
action language type or you may define an enumerated type. You may
choose your favorite editor to associate with the .typ text files. If you
have not yet done so, please follow the instructions in the installation
section for associating your favorite editor with the .typ file extension.

NOTE
The procedure used to create a type file is similar to that used
to create a PAL file. See Creation of Action Language Files on
page 20 for more information.

Support Files Controlled PALLocation
Property

Support Directory

system N/A N/A relative to .mdl file

domain No Any relative to .mdl file

domain Yes Domain Relative relative to domain .cat file

domain Yes System Relative relative to .mdl file

subsystem No Any follow rule of closest controlled
parent domain or subsystem

subsystem Yes Subsystem Relative relative to subsystem .cat file

subsystem Yes Domain or System
Relative

follow rule for domain
- 22 -

Modeling
System Level Types

Types defined at the system level are accessible to all domains. Domain
service parameter types must be defined at the system level.

1. Open any diagram and deselect all symbols.

2. Right-click in the diagram.

3. Select PathMATE Open System Types. The types file will open in
the editor associated with the .typ extension. Add the new type
to the file.

Domain Level Types

Types defined at the domain level are only accessible within the
domain.

1. Open any diagram and deselect all symbols.

2. Right-click in the diagram.

3. Select PathMATE Open Domain Types. The types file will open in
the editor associated with the .typ extension. Add the new type
to the file.

Referencing a User Defined Type

User defined types may be used anywhere a type is needed, for
example, attribute types and event and operation argument types.

1. Open the specification for the attribute, event argument, or
operation argument.

2. Enter the name of the user defined type in the type field.

Constants
Constants may be defined at the domain or system level. Constants are
initialized once at startup and never changed. Constants may be read in
actions but may not be used on the left hand side of an assignment or
passed as an output parameter.

System Level Constants

Constants defined at the system level are accessible to all domains.

1. Open any diagram and deselect all symbols.

2. Right-click in the diagram.

3. Select PathMATE Open System Init.

The system initialization action opens in the editor associated
with the .pal extension. Define the constant in the initialization
file. Please see the Action Language Overview for an explanation
of the global constant definition syntax.
- 23 -

Modeling
Domain Level Constants

Constants defined at the domain level are only accessible to the actions
in the domain where they are defined.

1. Select the domain where the constant will be defined in the
browser.

2. Right-click in the diagram.

3. Select PathMATE Open Domain Init.

The domain initialization action opens in the editor associated
with the .pal extension. Define the constant in the initialization
file. Please see the Action Language Overview for an explanation
of the global constant definition syntax.

- 24 -

4. Generate Code and Reports

You generate code interactively, or from a batch file. Likewise, you can
generate reports with either method.

Generate Interactively
To generate code or reports interactively:

1. Open the system model in Rose.

2. Select Tools > PathMATE Generate tope menu bar. Then select
C++, Java, C, or Reports.

The tool checks the model errors interactively. If errors are detected,
the tool will report the error message along with several options for
fixing or skipping the error. If errors are skipped or error checking is
cancelled, generation exits and displays an error message to the user.
Any unresolved error messages are captured in the error log. View the
error log by selecting the Window > Log menu item. After correcting
the error messages, select the generate menu option again.

When an error is detected, the diagram with the error opens
automatically. The Rose extensibility interface is modal, so you cannot
scroll through the open diagram. You can, however, adjust the zoom
factor when an error is detected. If you maximize an open diagram
before you select PathMATE Generate, the diagram with the error is
maximized as well, and you can see the erroneous diagram more easily.

If the system detects no errors, the PathMATE Extract Progress dialog
opens. The tool reads the models and produces a standard XML
interchange format file.

If this is the first time you have generated reports or code for this
model, the Code Generation Options dialog opens. Select the location of
the generated files and template path. Click OK to close the dialog. The
Engine reads the interchange file and interprets the templates to
produce the target files. The next time you select PathMATE Generate,
the Engine operates with the options you selected the first time.

If you want to change the code generation options you originally
selected, delete the batch file called after extracting the models to the
standard interchange format. For reports, locate genreports.bat in your
reports directory. For code, locate genc.bat, gencpp.bat, or genjava.bat
in the generated code directory. PathMATE opens the Code Generation
Options dialog the next time you generate.
- 25 -

Generate Code and Reports
NOTE
Alternately, you can open the batch file in your text editor, and
modify the destination directories directly in the batch file.
Either method of changing the code generation options works
equally well.

If the Engine detects errors, the error log file sprngbrd.err opens.
Correct the errors and select PathMATE Generate again.

If the Engine does not find any errors, it generates the desired files. By
default, generated files are placed in a path relative to your models.
The default directory for generated reports is <model
directory>\..\reports. The default directory for generated code is
<model directory>\..\project\<language>\gc.

Generate from a Batch File
In the batch file, specify the following command line to extract a Rose
model to an XML file:

start /wait rose_extract <model_path>.mdl

The extracted XML file will be generated in the same directory as the
.mdl file. Use the XML file as an input to the springboard command
using the –x option. See the PathMATE Transformation Engine User’s
Guide for more information about the Engine command line options.

After rose_extract completes, check the log file for errors. Errors in
command line options and PathMATE licensing are reported to the file
PathMATERoseExtract.log located in the directory from which
rose_extract is run.

NOTE
If Rose is running when you invoke rose_extract, rose_extract
will not function properly. Ensure that Rose is closed before
you run the rose_extract program.
- 26 -

5. Rename Analysis Elements

PathMATE for Rose augments the information in the Rose standard
repository with supplemental information required for complete
platform independent models. This supplemental information is stored
in PathMATE -specific Rose repository fields, and in text files (.pal and
.typ). As you rename model elements in the Rose standard repository,
the PathMATE Rename utility performs any required updates of
supplemental information.

NOTE
Note: The International version of Rose 2001 does not support
notifications of rename. When using this version, you must use
the PathMATE Rename menu options.

The Rename utility may be run manually or be automatically triggered
from a Rose rename operation on one of the following types of model
elements:

• Attribute

• Binary Association

• Domain (package)

• Event (<<Event>> operation)

• Class

• Class and Domain Service (operation)

The following model element types require the Rename utility to be run
manually:

• SubSuper relationships

• Realization relationships

• Parameters

• User defined types

• State

See the sections below for details on how to rename these element
types.

If Rename is not automatically activated from appropriate Rose rename
activities, check to make sure the PathMATE for Rose add-in is enabled
by selecting Add-ins > Add-In Manager from the Rose menus, and
checking the PathMATE check box.
- 27 -

Rename Analysis Elements
Options Dialog
To set PathMATE options, select the Tools > PathMATE Options menu
item. The Options dialog opens:

• Check Enable Rename must be checked to authorize the Rename

utility.

• Check Automatic Rename to run the Rename utility without
displaying the PathMATE Rename dialog.

• Check Auto Save to save the Rose model after each rename. This
option is recommended.

• Check Append to Log to append text to the existing rename log
file.

• Check Auto Remove to remove obsolete files automatically.

• Check Auto Create Files to create action language and type files
without prompting.

• Check Auto Update Header to update the //! header comments
automatically when opening writable .pal and .typ files.

Uniqueness Checks

When you rename an analysis element, PathMATE checks the new
name for uniqueness. If the newly selected name is not unique, the
following error dialog appears:

- 28 -

Rename Analysis Elements

The rename will fail. If rename was initiated through the PathMATE
Rename menu item, select the menu item again and enter a new name.
If rename was initiated through the specification and rename was
enabled, change the name back to the original name by disabling
rename, changing the class name to its original name, and then
enabling rename again.

Table 5-1 summarizes the range of PathMATE’s view when it checks for
the uniqueness of an analysis element’s name.

Table 5-1. Uniqueness Checks for the Names of Analysis Elements

Analysis Element Make Element’s Name Unique Within This Range

Association All associations contained in domain and its subsystems

Attribute Attributes in containing class

Class All classes in the domain and its subsystems. If class does
not have a prefix, class name must also be a unique prefix

Class Prefix All class prefixes within the domain and its subsystems

Domain All domains within the system. If domain does not have a
prefix, domain name must also be a unique prefix

Domain Prefix All domain prefixes for all domains in the system

Event All operations in the containing class with <<Event>>
stereotype

Operation All operations in the containing class without <<Event>>
stereotype

Parameter Parameters of the operation

Realization Relationship All SubSuper and Realization relationships in the domain and
its subsystems

Role Role names on the owning association

State All states and nested states on the statechart

SubSuper Relationship All SubSuper and Realization relationships in the domain and
its subsystems

User Defined Type All user defined types within the owning domain or system
- 29 -

Rename Analysis Elements
Rename Dialogs
The next dialog box is displayed at the start of the Rename utility. Click
OK to continue renaming. Click Cancel if you not want to rename at this
time.

Check Do not show this dialog again to bypass this dialog. To re-enable
the dialog, uncheck the Automatic Rename box in the Rename Options
dialog.

Check Disable PathMATE Rename to disable rename. The Rename
utility will not run until you check Enable Rename in the Rename
Options dialog.

 Locked Files

If a model file or supplemental file requiring changes is read-only, the
following error dialog is displayed:

If you are using a configuration management system, check out the
listed files. If you are not using a configuration management system,
clear the read-only attribute of the files. A complete list of the files can
be found in the rename log. Click Cancel to close the box. Attempt the
rename again after the files are unlocked.
- 30 -

Rename Analysis Elements
Model Errors Encountered

The next dialog is displayed only if a parsing error is encountered in one
or more of the PAL files or state model strings. Click OK to ignore the
errors. Click Cancel to stop the rename utility.

Duplicate File

Changes to some element types, such as Class, may require that PAL
file names be updated to reflect the new element name. In the case
where the new filename already exists, the next dialog appears.

- 31 -

Rename Analysis Elements
Obsolete Files

Renaming of files will also cause the old filename to be obsolete. The
next dialog shows the files that are no longer in use. Select the files
that can be deleted and press OK. To automatically delete all obsolete
files, check the Auto Remove box in the Rename Options dialog.

Save Model

When all changes required for the rename are complete, the next
dialog appears to request that the updated Rose model be saved. Click
OK to save the model. If you click Cancel and close the Rose model
without saving it, the PAL files must be regenerated the next time you
open the model.

If you want this dialog to prompt you to save the model, uncheck the
Auto Save checkbox in the Rename Options dialog.

- 32 -

Rename Analysis Elements
SubSuper Relationship Rename

Select the package for the domain. Right-click and select PathMATE
Rename > SubSuper. The following dialog appears. Select the SubSuper
relationship to be renamed from the list and enter the new name below.
Alternately, you may right-click in the empty space of any diagram in
the package and select PathMATE Rename > SubSuper.

- 33 -

Rename Analysis Elements
Realization Relationship Rename

Select the package for the domain. Right-click and select PathMATE
Rename > Realization. The following dialog opens. Select the
Realization relationship to be renamed from the list and enter the new
name below. Alternately, you may right-click in the empty space of any
diagram in the package and select PathMATE Rename > Realization.

Event and Operation Parameter Rename

Select the operation or event. Right-click and select PathMATE Rename
Parameter. The following dialog appears. Select the parameter to be
renamed from the list and enter the new name below.

State Rename

Select a state. Right-click and select PathMATE Rename. Enter the new
state name in the text box.

- 34 -

Rename Analysis Elements
User Defined Type Rename

To rename a domain-level type, select the domain (or any of its
sub-subsystems), right-click and select PathMATE Rename > Type.
Select the scope of the type and then select the type name. Enter the
new type name. Alternately, you may right-click in the empty space of
any diagram in the package and select PathMATE Rename > Type.

Selecting an Event for a Transition

If a transition has an action file associated with it, the action file must
be renamed when the event triggering the transition is changed. The
name of the action file will be automatically updated when rename is
enabled and PathMATE Select Event Spec is selected from the transition
context menu. If rename is disabled and the transition has an action
file, PathMATE warns the user that the transition action file needs to be
renamed by hand.

Rename log file

Each time the Rename Utility is used, details about the change are
written to the rename log file. The log file named RenameLog.txt is
written to the current working directory. A new log file is created for
each renamed element unless the Append To Log box is checked in the
Rename Options dialog.
- 35 -

6. User Defined Properties

Create a Rose Add-In
Create a Rose add-in to extend the properties of elements in Rose. The
Windows registry holds information about what add-ins are available
for use. Add-ins can be turned on or off using the Add-in Manager from
the Add-ins menu. Each add-in has a set of properties for the various
elements in Rose. A property typically has a default value, and that can
be overridden as necessary. Before adding an add-in, close Rose.

Define Properties

User defined design properties are defined in a .pty file.

1. Copy the file propertyTemplate.pty in the
<InstallDir>\config\rose directory to a local work area. Rename
the file to <add-in-name>Properties.pty.

2. Open the .pty file in any text editor.

3. Replace the text in the .pty file as follows:

<tabName> – Name of the tab that appears in the Specification
box. The name should be similar to your add-in name, and
distinct from other add-ins you have installed.

4. Using the template as a guide, specify the properties that you
would like to add. Search for the string # <analysis element
type> Properties to see an example of how to add properties to
a specific analysis element type such as a domain or class.

5. Delete parts of the property template that you will not be using.

6. Check that all parentheses match. Rose will produce an error in
the log for property files that fail to parse properly; this file will
indicate where the syntax check failed.
- 36 -

User Defined Properties
Define Registry Settings

A .reg file creates entries in the registry. The following section contains
instructions for adding registry entries necessary for Rose to recognize
your add-in.

1. Copy the file addRoseAddinTemplate.reg in the
<InstallDir>\config\rose directory to a local work area. Rename
the file to register<add-in-name>.reg.

2. Replace the text in the .reg file as follows:

Install Registry Settings

When you have finished updating the register<add-in-name>.reg file,
invoke it by double clicking or right-selecting Open on it. It should
return that the registration succeeded. If it does not, double check your
.reg file for accuracy.

Once an add-in has been successfully registered, open Rose again, and
verify that your add-in is active using the Add-in Manager from the
Add-ins menu item.

Make Your Add-In Properties Accessible
To make your new add-in properties accessible to the PathMATE
Transformation Engine, open the Specification for the Logical View and
Select the PathMATE tab. Ensure that the Set is System, click
IncludeTabs in the Name column, and click the blank space in the Value
column next to Include Tabs.

Enter in this field the names of other tabs you would like the Engine to
have access to, separated by commas. Note that the PathMATE tab is
ignored if found in the list.

To access the property from the Engine Template language use the
PROPERTY expression. For the name of the property use <tab
name>.<property name>. Note that the tab name is omitted for
properties defined on the PathMATE tab.

Conventions for User Defined Properties
• Always translate a model in write mode before you check it in.

• Do not change the default property sets in PathMATE, or in other
user defined tabs, once the translator has set them.

• If you suspect you are getting the wrong properties, open the
model for write and try retranslating.

<addinName> Name of Your Add-In

<drive>:\\<path_with_
double_backslashes>

Fully qualified directory where files associated with
the add-in will be stored. Use \\ in the file name in
place of \.
- 37 -

User Defined Properties
Additional Information
User defined properties consist of a tab name with one or more
property sets. One property set is defined as the default. When an
element is created, the default property set is displayed on the user
defined property tab.

More than one property set is used when an analysis element can mean
more than one thing. For example, all analysis elements and diagrams
in the system are contained in the Logical View package. In addition,
domains are represented by packages. Thus there are two property
sets for a package on the PathMATE tab – one for the system, and the
default for the package. You will have more than one property set for
user defined properties on operations, since an operation can be
stereotyped as an Event or can be just an operation.

When reading the properties tabs for an analysis element, the Visual
Basic interface to Rose can read only from the current property set. The
current property set is the one you see when you open the specification
and select the property tab.

In order to read another property set, you have to change the current
property set. Unfortunately, this requires the model to be writable. In
UML Essentials for Rose version 4.02.008 and lower, the extract
program changed the property set to the required set (System for
Logical View package and default for domain packages). This quality
ensures that the correct property set is extracted, but it required the
model to be writable. Requiring the model to be writable for translation
was very inconvenient for users using configuration management
systems.

In version 4.02.009 and later, the extract program gets the current
property set if the unit, model or .cat file (depending on the analysis
element being extracted) is read-only and does a set current property
set if the unit is writable.

If all three of these conditions are met, the wrong property for an
element could be extracted:

• You create an analysis element that has more than one property
set on the tab.

• You do not open the tab to set any of the properties.

• You do not translate the model while it is writable.

The risk that all three things would happen together is small, because if
you did not select the property set, you probably did not change any of
the property defaults. Thus default values are used when the property
is extracted in the templates.
- 38 -

- 39 -

7. Rose Issues

Documentation Diagrams
A Rose defect sometimes causes extra white space to appear in
diagrams, or diagrams appear stretched in Rich Text Format Reports. To
remedy this problem, perform the following steps in Rose for each
diagram that appears incorrectly:

1. Select the diagram.

2. Select View > Zoom In.

3. Select Format > Autosize All.

4. Select File > Save.

5. Regenerate your report.

For more information go to:

http://www.rational.com/technotes/soda_html/SoDA_Word_html/t
echnote_12119.html

Active and Selected Diagrams
Diagram menu items may work in the active diagram, but not diagrams
selected in the browser. In the Rose extensibility environment, you
cannot determine if the browser or a diagram has focus. When a
diagram is selected in the browser and a diagram is active in the
window, the diagram context menu will operate on the diagram that is
active rather than the diagram selected in the browser.

A. PathMATE Menu Items

The table below describes PathMATE menu item selectability and
connectivity with model elements. Menu items that open a PAL file
require that the model be saved. PAL files are located in directories
relative to the model file. If the model file is not saved, the tool does
not know where to open or create the PAL files.

Table A-1. PathMATE Menu Items in Rational Rose

 Model
Saved

Diagram Type Type of iTem Selected

Attribute Menu

PathMATE Rename Yes None Exactly one attribute
assigned to a class in a
domain

Default Menu

PathMATE Open > System
> Types

Yes Any Any

PathMATE Open > System
> Init

Yes Any Any

PathMATE Rename Type Yes Any Any

Class Menu

PathMATE Rename >
Class

Yes Any Exactly one class assigned to
a domain

PathMATE Rename >
Prefix

Yes Any Exactly one class assigned to
a domain

Diagram Menu

PathMATE Open > System
> Types

Yes Any None

PathMATE Open > System
> Init

Yes Any None

PathMATE Open > Domain
> Types

Yes Any diagram assigned to
domain

None

PathMATE Open > Domain
> Init

Yes Any diagram assigned to
domain

None

PathMATE Rename > Type Yes Any None

PathMATE Rename >
SubSuper

Yes Any diagram assigned to
domain

None

PathMATE Update Event
Args

Yes or No Statechart assigned to class
and domain

None

PathMATE Update Actions Yes Statechart assigned to class
and domain

None
- 40 -

PathMATE Menu Items
PathMATE Check Yes or No Statechart assigned to class
and domain

None

Role Menu

PathMATE Rename > Role Yes Class diagram in a domain Exactly one role assigned to
a class in a domain

PathMATE Rename >
Association

Yes Class diagram in a domain Exactly one role assigned to
a class in a domain

State Menu

PathMATE Open > Entry
Action

Yes Statechart assigned to class
and domain

Exactly one normal state

PathMATE Open > Exit
Action

Yes Statechart assigned to class
and domain

Exactly one normal state

PathMATE Update Actions Yes Statechart assigned to class
and domain

One or more normal states

PathMATE Rename Yes Statechart assigned to class
and domain

Exactly one normal state

Transition Menu

PathMATE Open Event Spec Yes or No Statechart assigned to class
and domain

Exactly one transition

PathMATE Select Event
Spec

Yes or No Statechart assigned to class
and domain

Exactly one transition

PathMATE Open Action Yes Statechart assigned to class
and domain

Exactly one transition

PathMATE Update Action Yes Statechart assigned to class
and domain

One or more transitions

Operation Menu

PathMATE Open Action Yes None Exactly one non-event
operation in class assigned
to domain

PathMATE Rename >
Operation

Yes None Exactly one operation in
class assigned to domain

PathMATE Rename >
Parameter

Yes None Exactly one operation in
class assigned to domain

Package Menu

PathMATE Open > Domain
Types

Yes None Exactly one domain

PathMATE Open > Domain
Init

Yes None Exactly one domain

PathMATE Rename >
Domain

Yes None Exactly one domain

PathMATE Rename > Prefix Yes None Exactly one domain

PathMATE Rename >
SubSuper

Yes None Exactly one domain
- 41 -

PathMATE Menu Items
PathMATE Rename > Type Yes None Exactly one domain

PathMATE Rename >
Realization

Yes None Exactly one domain

Tools Menu

PathMATE Generate > C++ Yes None None

PathMATE Generate > C Yes None None

PathMATE Generate > Java Yes None None

PathMATE Generate >
Reports

Yes None None

PathMATE Options Conditional None None
- 42 -

	Preface
	Audience
	Related Documents
	Conventions
	How to Use this Guide
	PathMATE Overview

	1. Introduction
	2. General Procedures
	Product Installation
	Set the Rational Rose CURDIR Symbol
	Text Editor for PAL and Type Files

	Model Conversion
	Preparing Models for Conversion
	Conversion during Generation
	Converting with rose_convert Program

	Model Creation
	Files and Subdirectories
	Diagram Documentation Blocks
	Analysis Element Names

	3. Modeling
	Domain Modeling
	Domain Symbols and Requirements Flow
	Class Diagram
	Domain Services
	Add Subsystems
	Domain Repository

	Scenario Modeling
	Create a Sequence Diagram
	Describe the Scenario
	Add Domain Entity
	Add Class Entity
	Add Inter-Domain Interaction (System-Level Scenario)
	Add Inter-Class Interaction (Domain-Level Scenario)

	Class Modeling
	Class Modeling for a Domain
	Class Properties
	Specify Attributes
	Specify Class Operations
	Add Association
	Subtype/Supertype (Inheritance)
	Realization Relationship

	State Modeling
	New State
	Entry/Exit Actions
	Transition Actions
	Guard Expressions
	Update All Actions on a Statechart
	Update Selected Actions
	Ignored or Deferred Events
	Superstate
	Define Event
	Use Event
	Update Event Arguments on State Model
	Open Event Specification
	Check State Model

	Action Modeling
	Creation of Action Language Files
	Storage of Action Language Files

	User Defined Types
	System Level Types
	Domain Level Types
	Referencing a User Defined Type

	Constants
	System Level Constants
	Domain Level Constants

	4. Generate Code and Reports
	Generate Interactively
	Generate from a Batch File

	5. Rename Analysis Elements
	Options Dialog
	Uniqueness Checks

	Rename Dialogs
	Locked Files
	Model Errors Encountered
	Duplicate File
	Obsolete Files
	Save Model
	SubSuper Relationship Rename
	Realization Relationship Rename
	Event and Operation Parameter Rename
	State Rename
	User Defined Type Rename
	Selecting an Event for a Transition
	Rename log file

	6. User Defined Properties
	Create a Rose Add-In
	Define Properties
	Define Registry Settings
	Install Registry Settings

	Make Your Add-In Properties Accessible
	Conventions for User Defined Properties
	Additional Information

	7. Rose Issues
	Documentation Diagrams
	Active and Selected Diagrams

	A. PathMATE Menu Items

