

Platform Independent
Action Language

Version 3.0

February 2, 2009

PathMATE™ Series

Pathfinder Solutions
www.pathfindermdd.com

+1 508-568-0068

Copyright 1995 – 2009 Pathfinder Solutions LLC, all rights reserved

Table Of Contents

Preface...iii

PI-MDD and PathMATE Overview ...iv

1. Introduction.. 1

2. Action Overview.. 2
What Are Actions? ... 2
What Can Actions Do?.. 2
What Makes Up an Action? ... 2
How are Actions Used?... 3

3. Action Semantics... 4
Data Context .. 4
Statements .. 5

4. Readable Code and Actions ... 21

5. More Examples.. 21

6. One More Time - So How Come We Don’t Just Put Code in the Model? 21

ii

Preface

Audience

The Platform Independent Action Language Guide is for modelers
building Platform Independent models for transformation with the
PathMATE environment. Familiarity with the Platform Independent
Model Driven Development (PI-MDD) method and Modeling Language
(UML) is helpful background knowledge for the material in this guide.

Related Documents

These PathMATE documents are available at www.pathfindermdd.com:

• Accelerating Embedded Software Development with a Model
Driven Architecture (white paper)

• PathMATE: Model Automation and Transformation Environment for
Embedded Systems (online brochure)

• PathMATE Quick Start Guide

Conventions

The PathMATE Modeler’s Guide uses these conventions:

• Bold is for clickable buttons, menu selections, and sub-headings.

• Italics is for screen text, path and file names, and other text that
needs special emphasis.

• Courier denotes code, or text in a log or a batch file.

• A Note contains important information about a procedure or a
process.

Getting Ready

If you are not already familiar with the PathMATE toolset, read the
overview that begins on page v. If you have not installed the
PathMATE toolset on your computer, download the software from
www.pathfindermdd.com and follow the installation instructions in
available at the PathTECH portal at www.pathfindermdd.com.

It is assumed that you are familiar with your UML editing tool. You
may wish to complete the PathMATE Quick Start Guide for your UML
tool.

iii

http://www.pathfindermdd.com/
http://www.pathfindermdd.com/

PI-MDD and PathMATE Overview

This overview introduces the Platform Independent Model Driven
Development (PI-MDD) method and the PathMATE™ tools. PI-MDD is a
coherent, end-to-end, step-by-step process for building special UML
models for the deployment of high-performance software systems
through fully automated and Self Optimizing code generation.

Through decades of industry experience, a this modeling methodology
has evolved a carefully integrated set of mutually supporting
architectural, modeling and deployment techniques. Building a
complete and executable set of models completely at the problem-
space level of abstraction, this approach has been refined and can now
produce quantum gains in developer team productivity and delivered
system quality. Based upon modern standards including the OMG
Model Driven Architecture (MDA), automation technology makes the
right way to build complex systems the fastest way as well.

PathMATE Toolset

The PathMATE Model Automation and Transformation Environment
includes all the tools required to transform your PI-MDD models into
high-performance deployed systems (Figure 1).

Figure 1. PI-MDD Methodology Flow

The three parts of the PathMATE toolset cooperate to turn your models
into Self Optimized systems:

iv

• Transformation Engine – The Engine extracts your model
information from your UML tool, verifies consistency and
correctness, and transforms it to a range of output forms via
Transformation Maps.

• Transformation Maps – Generate C, C++, or Java implementation
code with off-the-shelf Transformation Maps, or create custom
maps to drive output for other languages or specific platforms.

• Spotlight – Verify and debug your application logic with Spotlight,
the most advanced model-level execution and automated test
environment available.

Based in the Eclipse environment, PathMATE is the most open and
extensible model transformation technology available. This diagram
shows all the aspects of PathMATE that allow process-level,
transformation-level, code-level and other customizations to how this
technology automates the development of your system.

v

Platform Independent Action Language

1. Introduction

This document provides a summary of the Platform Independent
Action Language (PAL) as applied in the PI-MDD method. PAL is a
platform independent form of behavioral expression: a programming
language for Platform Independent Models (PIMs) using the Object
Management Group (OMG) UML Standard Action Semantics. Please see
“UML Action Semantics Revised Final Submission,” available from
www.omg.org. Through its focus on platform independent model
constructs, action language:

• Is concise and easy to learn, with a familiar, C++-like syntax.

• Provides the most convenient form of expression for PIM action
procedures.

• Offers strategic agility through implementation platform
independence and implementation language independence.

• Effectively enforces PIM separation from implementation code.

• Enables the highest degree of freedom to apply varying and
project-specific implementation architecture and optimizations
through transformation.

It is assumed that the reader is somewhat familiar with PI-MDD/UML
modeling conventions as specified in the Model Based Software
Engineering (MBSE) approach for modeling with the UML, as
introduced in:

"Model Based Software Engineering: Rigorous Software
Development with Domain Modeling," Pathfinder Solutions.
(This paper is available from www.pathfindermdd.com.)

The Action Language Quick Reference syntax summary is provided for
your convenience in Appendix A. Print it separately and keep it handy.

1

http://www.omg.org/
http://www.pathfindermda.com/

Platform Independent Action Language

2. Action Overview

What Are Actions?

Actions are procedures in your UML models. More specifically, they are
the operations, state actions and transition actions that specify the
precise execution behavior of your modeled domains (PIMs):

• Domain service (interface class operation)

• Class operation

• State entry, exit and transition action

• System and domain initialization

What Can Actions Do?

Actions operate within two realms. Actions from any context (from
within any domain, or from the system initialization) can directly
invoke the published services other domains. Actions (except for the
system initialization) can also directly manipulate the model
abstractions that exist within their own domain. This includes creation
and deletion of class instances, reading and writing class attribute
values, linking and unlinking of associations, generation of signals, and
invocation of operations.

An action in one domain cannot access any internals within another
domain.

What Makes Up an Action?

An action is very similar in execution semantics to a function from a
procedural programming language. It is made up of blocks of
statements. The action itself has a root block of statements, and
certain statements have blocks nested within them.

Each statement is made up of expressions and keywords. Expressions
are accessors to Analysis elements, local variables, compound
expressions (with operators), or literals.

2

Platform Independent Action Language

How are Actions Used?

Actions, along with all other Analysis elements in your system, are fed
into the code generation step where they are mapped to executable
implementation code. Since actions specify the complete behavior for
a domain in model-level terms, PathMATE Transformation Maps
producing implementation code carefully review how all model
constructs are used by the actions to Self Optimize the code produced.

Unlike code-in-the-model approaches where actions are specified in
implementation code, PAL in actions provide the information needed
by the Transformation Maps to generate the most efficient code,
automatically optimized for exactly how the model will behave:

• Self trimming of unused model elements
• Only build in run-time layer elements actually used
• Self-selection of optimal memory management, instance data

storage and access mechanisms
• Generate tailored infrastructure code only when needed,

avoiding unused or inefficient constructs
• Efficient topology resolution, automatically using local accesses

where intertask and interprocessor mechanisms are not
necessary.

• Transformation-time selection of optimal infrastructure,
generating compile time resolution where possible

3

Platform Independent Action Language

3. Action Semantics

Platform-independent Action Language (PAL) is a programming
language with specific primitives to support the manipulation of
Analysis elements. To describe Action Language syntax, this document
uses the following conventions:

[optional item] {either | or} 0 or more iterations, …
All bolded characters (such as {|}, []) indicate actual use of these
characters in the action language.
Italic items are substitution items or annotations.
All action language keywords are case sensitive, and are shown in BOLD.
// In action language, comments are like in C++

// This is a commented action language statement
Student.LastName = “Smith”;

Data Context

Each action has a varying set of data atoms that it reads and/or
writes.

Explicit

Each domain service or class operation may have parameters defined.
Services and operations may also have a return value. State actions
may have signal parameters. All actions may declare and use local
variables.

Implicit

Instance-based class operations, or instance-based state actions have
a “this” variable available as a Reference to the target instance. Literal
and symbolic constant values may be used. FIND accessors over entire
instance populations (FIND CLASS) imply the use of a domain-wide
population of instance references.

Data Types

There is a fixed set of data atoms in a PIM: attribute, service,
operation or signal parameter, and action local variable. Each atom is
of a specific data type. There is a core set of basic, built-in data types:

• Boolean: TRUE or FALSE

• Character: an ASCII character

• Integer: whole number (width is design dependent)

• Handle: generic reference (similar to void* in C)

• Real: floating point number (size is design dependent)

• FineGrainedTime: Specification of time to the nanosecond level

• String: a variable length ASCII string

• GenericValue: stores a String, Real, Handle, or Integer (similar to
C union)

4

Platform Independent Action Language

In addition there are advanced data types:

• Ref<class>: a reference to an instance of <class>, commonly
used as a type for a local variable used to iterate over the results
of a Find or Navigate

• Group<base type>: an ordered set of <base type> items,
commonly used as a type for a service parameter to support
passing sets of data items between domains

• GroupIter<base type>: an iterator over an ordered set of <base
type> items, used to iterate over items in a group.

[Boolean | Character | String | Real | Integer |
GenericValue | Handle | Group<base_type> |
GroupIter<base_type> | Ref<class_name> |
FineGraniedTime | IncidentHandle]

The modeler can define new types:

• Enumerations

• Aliases base types (similar to typedef in C). The ms_vector_t
below is an example of an alias of the base type Handle:

Statements

Statements combine expressions to accomplish specific tasks within
actions.

Data Manipulation

Assignment - writes the value of the expression on the right of the
equal side into the data atom on the left:

{ AttributeAccessor | Parameter | LocalVariable |
IncidentHandleParameter } = Expression ;

Student.LastName = “Smith”;

Local Variable Declaration – declares a local variable (scope limited
to declaring action):

DataType variable_name { = initial_value };

String name; // declare name

5

Platform Independent Action Language

Integer counter = 5; // declare counter - set to 5

Constant Declaration – in the system or domain initialization action
declare a constant. Constants defined in the system initialization action
are accessible to all domains. Constants defined in the domain
initialization action are accessible only to the domain where they are
defined.

CONST DataType variable_name = initial_value;

CONST INTEGER EMIF_MAX_RECEIVE_BUFFER = 1024;

External Constant Declaration – in the system or domain
initialization action declare a constant that is defined in realized code.
The action language parser will recognize an external constant but will
not create a definition for it. External constants defined in the system
initialization action are accessible to all domains. External constants
defined in the domain initialization action are accessible only to the
domain where they are defined.

EXTERN CONST DataType variable_name;

EXTERN CONST INTEGER EMIF_MAX_RECEIVE_BUFFER;

Note: Some Transformation Maps such as the Pathfinder C++ Map
support an IncludeFile property that contains the name of a realized
include file containing the definition of the external type. Consult the
Design User's Guide for more information.

Data Atom Ordering - sorts the specified list of data atoms based on
their value. “/” indicates ascending order (default), or “\” indicates
descending order:

ORDER GROUP [{ / | \ }] group;

Instance List Ordering – These statements sort the specified class
instance population based on the specified attribute(s). The attributes
can be preceded by “/” to indicate ascending order (default), or “\” to
indicate descending order. The most significant key is specified first:

Class Population Ordering – sorts the specified class instance
population:

ORDER CLASS class_name BY ([{ / | \ }]
attribute_name, …);

6

Platform Independent Action Language

// order all instances of Sensor ascending by
// detection zone
ORDER CLASS Sensor BY (/detectionZone);

Note: Data orderi ed when new elements are added
to the group or instanc ple, if an ORDER
statement on created a new
instance of the class, r specified by the ORDER statement
would ained,
use the

Execution

ach class instance in the specified
 is assigned to the cursor variable, and the

 is executed. An optional WHERE clause filters

g attributes of the target class with any data

ng is not maintain
e population. For exam

was executed and a subsequent acti
the sort orde

not be maintained. If you want a sort order to be maint
s. Sort design propertie

 Flow Control

Action Language contains conditional and iterative execution flow
control constructs.

Statement Block – A statement block is a sequence of statements.

Instance List Iteration – These statements declare a cursor
variable, and then iterate over e
population. Each instance
nested statement block
the instance set to only those that match the specified Boolean
expression comparin
atoms available in the action context.

Class Population Iteration - iterate over the entire class
population:

FOREACH cursor_variable = CLASS class name [WHERE
(Expression)] { StatementBlock }

Association Population Iteration - iterate over the associated
instance population (Navigation is an association navigation

CH cursor_variable = Navigation [WHERE

expression):

FOREA
(Expression)] { StatementBlock }

// for each threat (any level) assigned to
gf_tracker
FOREACH threat = gf_tracker -> A9
 WHERE (Subject.threatLevel > SRM_MIN_THREAT)
{

7

Platform Independent Action Language

 body of loop...
}

Conditional – execute the first statement block if the Boolean
Expression is TRUE, otherwise execute the optional else statement
block.

IF (Boolean Expression) { StatementBlock }
[ELSE IF (Boolean Expression) {StatementBlock}]
[ELSE { StatementBlock }]

Iterat is TRUE,
execut FALSE, or
a BREA

ive – evaluate the specified Boolean expression – if it
e the statement block. Repeat until the expression is
K statement is encountered.

WHILE (Expression) { StatementBlock }

Break the enclosing iterative control structure
(WHILE FOREACH). Skip all remaining statements in the iterative

ent

 – in
 or

terrupt execution of

statement block, and resume execution after the iterative statem
block:

BREAK;

Contin
iterativ . Skip all remaining
statements in the iterative statement block, and resume execution at

ue - interrupt execution of only this iteration of the enclosing
e control structure (WHILE or FOREACH)

the top of the iterative statement block:

CONTINUE;

Function

Invocation – call the specified service, operation or built-in method

Ins and Outs

(with no return value):

{ Service Accessor | BuiltIn method};

// Domain service
EntityTracking:Identify(client_id, local_id);

Service/Operation Value Return – return from this service with th
specified return value:

RETURN [Expression];

e

Expressio

ing that provides a data value, receives a data
n to), and/or performs some action.

ssio s are also used to invoke services and
access built-in capabilities.

ns

An expression is someth
value (when it is writte
Expressions are used to create, store and access data values and
Analysis elements. Expre n

8

Platform Independent Action Language

Variables

Local V

ame rs can be referenced in the service
action; signal parameters can be referenced in the state action:

constant:

Acc

rs are expressions that read or write specific Analysis data

Class ccessors

 can

stance_ref . attribute_name

ariable Reference – used after its declaration:

variable_name

Parameter – service par te

parameter_name

Constants

Constant Reference – system or domain scoped constants defined in
the initialization action may be used within the scope of the

constant_name

essors

Accesso
atoms.

and Attribute A

Attribute – read or write a class attribute value. The instance_ref
be a local variable, a service or signal parameter, or the “this”
reference in instance-based class operations or states:

in

// Read attribute from some other instance
new_subj_type = new_subject.type;
// Write attribute in this instance
this.type = SRM_CONFIRMED_TRACK;
// Same as above
type = SRM_CONFIRMED_TRACK; // “this” assumed

Class Instance Create – create an instance of the specified class and
type must be specified (no

supertypes). Attribute values must be specified if there is no default.

= Expression,

return a reference to it. A leaf sub

An initial state name must be specified if there is no default (a default
state is specified by the initial state bullet on a state model):

CREATE class_name ([attribute_name
…]) [IN initial_state]

// create a field of view instance
Ref<FieldOfView> fov = CREATE FieldOfView (id =

provided_id, space = target_space);

Class instance from all
associa

Instance Delete – unlink the specified
tions it participates in, and remove it:

DELETE instance_ref

DELETE fov;

9

Platform Independent Action Language

Note: P
instanc

Class-Based Find – Find the first (default) or last instance of the
specifie he instance set to
only th
attribu

d:

lass_name [WHERE

athMATE Transformation Maps automatically unlink a deleted
e from all its associations.

d class. An optional WHERE clause filters t
ose that match the specified Boolean expression comparing
tes of th in the e target class with any data atoms available

. If no matching instance is found, NULL is reaction context turne

FIND [{ FIRST | LAST }] CLASS c
(Expression)]

// search all sensor instances and
// find number 314
Ref<Sensor> detector_314 = FIND CLASS Sensor
 WHERE(Sensor.dataSourceId == 314);

// find any sensor
Ref<sensor> any_sensor;
any_sensor = FIND CLASS Sensor;

Navigation-Based Find – Find the first (default) or last instance
through the specified chain of association navigations. An optional
WHERE clause filters the instance set to only those that match the
specified Boolean expression comparing attributes of the target class
with any data atoms available in the action context. If no matching
instance is found, NULL is returned:

 [WHERE FIND [{ FIRST | LAST }] Navigation
(Expression)]

Note: W
any data atom available from the action context: local variables,
consta the target
instanc t perform other
instanc e, including instance-

HERE expressions are Boolean expressions that can include

nts, and parameters. It also includes attributes of
e. However a WHERE expression canno
e-based accesses of the target instanc

based operation invocations, or association accesses (navigation).

// locate a Sensor in fault state

10

Platform Independent Action Language

// (We are in a TrackerAssembly action)
Ref<Sensor> faulted_detector;
faulted_detector = FIND FIRST this -> A33
 WHERE(Sensor.operationalState == SI_FAULT);

Relationship Accessors

Association Link – establish a connection between the specified class
instances. If the association is reflexive (the same class at both ends),
then at least one role phrase must be specified. If the association has
an associated class, an associated class instance reference must be
provided.

LINK [@role_phrase1] instance1_ref
A<number> [@role_phrase2] instance2_ref
[ASSOCIATIVE assoc_ref]

Unlink . .
If the a
least o

 not delete the associated class instance

 - break the connection between the specified class instances
ssociation is reflexive (the same class at both ends), then at

ne role phrase must be specified. If the association has an
onnected, this instance is deleted associated class instance c

automatically by unlink. Do
prior to or after the unlink.

UNLINK [@role_phrase1] instance1_ref
Anumber [@role_phrase2] instance2_ref

Ref<SensorRegion> old_region;
Ref<SensorRegion> new_region;
Ref<Sensor> sensor;
 .
 .
UNLINK sensor A3 old_region;
LINK sensor A3 new_region;

Navigation Expressions – There are used to traverse associations
and inheritance relationships (downward only). A Navigation
Expression may return no instances, a single instance, or a collection
of instances – all depending on the multiplicity of the associations in
the Navigation Expression. A Navigation Expression may contain
multiple individual navigations chained together with the across
operator “->”. A Navigation Expression cannot be used as a class

11

Platform Independent Action Language

instanc nly used in the context of a
FIND a DER statement.

SubSu st” to get from a supertype to a
specific NULL if the actual subtype encountered at
run-tim subtype. Upcasting is
perform used anywhere a supertype
is expe

e reference expression itself – it is o
ccessor, FOREACH statement, or OR

per Navigation – “downca
 subtype. Returns
e subtype does not match specified

 beed automatically. A subtype can
cted.

supertype_reference -> subclass_name

// Ref<Sensor> asset
// navigate from asset to
// RadarSensor subtype
asset -> RadarSensor

Association Binary Navigation – Navigate from the start_ref class
instance across the specified association to the instance(s) at the other
end:

[@role_phrase1] start_ref->A<number> [-
>@role_phrase2 dest_class_name]

_1 AND [@role_phrase2]

Association Navigation to Associated Class – Navigate to the
instance of the class associated with a link between class instances
start_ref_1 and start_ref_2:

[@role_phrase1] start_ref
start_ref_2 ->A<number>

Signal

Generate – create an instance of the specified signal, and queue it for
dispatch to the specified instance. No destination is provided for create

12

Platform Independent Action Language

signals nt to self
from a value
provide l be held in the delayed

ed
illiseconds:

. Destination is optional for self-directed signals se
n instance state. All signal parameters must have a
d. If a delay is specified, the signal wil

signal mechanism for a minimum of the period specified, and then it
will be queued for dispatch. Delay can be specified in via a
FineGrainedTime with its nanosecond precision, or if an integer is us
the units are assumed to be m

GENERATE signal_name (Expression, …) [AFTER
(delay)] [TO (destination_ref)]

// self-directed signal – defaults TO (this)
GENERATE Subject:PositionUpdated(new_pos);

// signal to another instance
GENERATE Subject:PositionUpdated(new_pos) TO
(priority_subject);

// delayed signal TO (this)
GENERATE Subject:RetryTimerExpired() AFTER
(SRM_RETRY_MS) TO (subj);

Cance
destina move
it befor his signal is
outstanding against the specified destination, delete the one with the
shortes ration
actuall

ation_ref)]

l – If an instance of this signal destined to the specified
tion is still held in the delayed signal mechanism, then re
e transmission. If more than one instance of t

t delay remaining. No indication is returned if this ope
y found an instance of the signal.

CANCEL signal_name [TO (destin

// Set timeout
GENERATE Subject:RetryTimerExpired() AFTER
(SRM_RETRY_MS) TO (subj);
. . .
// cancel timeout
CANCEL Subject:RetryTimerExpired TO (subj);

Service and Operation Invocation

Domain Service Invocation – may have a return value:

: (domain_prefix service_name Expression, …)

// Domain service
EntityTracking:Identify(client_id, local_id);

Class a return
value:

operation Invocation (class based) – may have

class_prefix:service_name(Expression, …)

13

Platform Independent Action Language

Class operation Invocation (instance based) – may have a return
value:

instance_ref . [class _prefix:
]service_name(Expression, …)

Note: A service
on a su

tHandle

Create ecific service
(only v ter values
must be specified if there is no default:

 IncidentHandle ([parameter_name =

lways omit the class prefix when calling a polymorphic
pertype instance.

Inciden

 IncidentHandle – create a IncidentHandle to a sp
alid to services in context domain). Input parame

CREATE
Expression, …]) TO { domain_prefix | class_prefix
}:service_name

// create incident handle directed to this instance
IncidentHandle action_succeeded = CREATE
IncidentHandle (sensor_id = new_sensor.id) TO
SensorResourceManagement:SensorOnline;

Invoke IncidentHandle – input parameter values are optionally
specified:

SensorResourc
sensorId)

eManagement:SensorOnline(Integer:

CALL service_handle ([parameter_name =
Expression, …])

IncidentHandl cidentHandle parameter can be
directly referenced for r sing the parameter name as an
index (error behavi fic):

e Parameter – a In
ead or write u

or is Design-speci

service_handle [parameter_name]

client_callback [status] = NO_ERROR;

14

Platform Independent Action Language

NOTE: of an
Inciden

• Name to parameter set

• Permit the server to use an Incident Handl independent of the
cli

The client-side service is marked with a Profile Name. The data
elements on the service side holding the Incident Handle are marked
with th ndle Profiles is a

ML ed
athmate/doc/TechNotes/TechNote_IncidentHandleProfile.pdf

 Using parameter values requires the specification
tHandle Profile to

• Ensure correspondence between set and expected parameters
values

e
ent

e same name. The specification of Incident Ha
itor-dependent activity, and is documented in U

/p

15

Platform Independent Action Language

Built-In methods

Invocation – built-in methods are invoked as methods of their
operand:

Operand.method_name(parameters…)

Group built-ins - Group data types have the following support
methods:

Add an item in front of the first item in the group:

group_expression.addFront(item)

Add an item after the last item in the group:

group_expression.addBack(item)

Add an item after the current position (indicated by the iterator):

group_expression.insert(iter, item)

Return the first item in the group:

group_expression.front()

Return the first item in the group:

group_expression.back()

Remove the first item with the specified value from the group:

group_expression.remove(item)

Delete the item at the iterator location from the group:

group_expression.erase(iter)

Remove all items from the group:

group_expression.removeAll()

Return an integer specifying the number of items in the group:

group_expression.size()

Return the specified item in the group (0-based index; error behavior
is Design-specific):

group[index]

16

Platform Independent Action Language

Group<String> names;

// adding elements
names.addBack(“Joe”); // Joe
names.addFront(“Mary”); // Mary, Joe
names.addBack(“Sue”); // Mary, Joe, Sue

// accessing elements
String name1 = names.front(); // Mary
String name2 = names[1]; // Joe
String name3 = names.back(); // Sue

GroupIter built-ins - GroupIter data types have the following
support methods:

Establish the base group for the iterator – required before any other
iterator operations:

group_iter_expression.setGroup(group)

Reset the iterator to the front of the list:

group_iter_expression.front()

Return the iterator to the back of the list:

group_iter_expression.back()

Return the current item in the group:

group_iter_expression.current()

Increment the iterator’s position in the group, and return the new
current item in the group:

group_iter_expression.next()

Decrement the iterator’s position in the group, and return the new
current item in the group:

group_iter_expression.previous()

Return a boolean indicating if the last next() operation has advanced
past the end of the list, or if the last previous() operation has
advanced past the beginning of the list:

group_iter_expression.finished()

Group<String> names;

// iterate from beginning to end
GroupIter<String> cursor;
cursor.setGroup(names);
cursor.front();

17

Platform Independent Action Language

WHILE(!cursor.finished())
{
 // get name at current iterator position
 String current_name = cursor.current();
 // … do something with name
 // advance to the next item in the group
 cursor.next();
}

18

Platform Independent Action Language

Expression Mechanics

Binary Expression – has two operand expressions combined by an
operator. Binary expressions can be nested, and grouped with
parenthesis:

[(] Expression Operator Expression [)]

Arithmetic Binary Operators

+ plus
 - minus
* multiply
/ divide
% modulus

Bitwise Binary Operators

& and
^ exclusive or
| inclusive or
<< left shift
>> right shift

Boolean Binary Operators

< less than
<= less than or equal to
> greater than
>= greater than or equal to
&& and
|| or
== equal to
!= not equal to

Unary Expression –

[(] UnaryOperator Expression [)]

Unary Operators

+ arithmetic positive
- arithmetic negative
~ complement
! Boolean not

19

Platform Independent Action Language

Literals

Boolean Literal -

{ TRUE | FALSE }

Character Literal – a single character:

'character'

Integer Literal - one or more digits:

digit…

123 or 0xffffffff

Invalid Class Instance Reference -

NULL

Uninitialized or Invalid IncidentHandle Reference -

EMPTY_SERVICE_HANDLE

Real Literal

IntegerLiteral . IntegerLiteral [e [-]
IntegerLiteral] -

3.45 or 3.45e-6

String Literal - use \ to embed a double quote “ :

"character…"

Attaching Marking Values to Statements

Marking Values – each PAL statement may have one or more PIM
markings applied in name value pairs accessible to the Transformation
Maps. Properties are defined in curly braces after the statement
semicolon or closing curly brace. The property name must begin with a
letter followed by a letter, number or underscore.

statement ; [{ property_name = "property_value",
…}]

WD:DetectWeatherElements (input_buffer); {Routing=SIGNAL_CONDITIONING}

20

Platform Independent Action Language

4. Readable Code and Actions

The Platform Independent MDD Modeling Conventions available in
/pathmate/doc/modeling_conventions.pdf provide a wealth of
guidelines on techniques that experienced teams use to build modeler-
friendly models. Central is the set of naming conventions that can be
especially helpful to the writers/readers of PAL actions. We encourage
you to adopt them (or some variant of your own).

5. More Examples

The best place to see PAL examples is in each of the fully executable
sample systems provided with PathMATE, including SimpleOven,
ExperimentControl and others (depending on your UML editor
integration with PathMATE).

6. One More Time - So How Come We Don’t
Just Put Code in the Model?

Some of the most popular MDD tools support code-centric
development. This is a great way for organization sensitive to cultural
change ease their way into the world of modeling. But code-centric
models have been shown to be twice as complex as PI-MDD models.
Specifically in the case of actions, implementation languages have
critical limitations:

• They do not directly support manipulation of UML primitives
• It takes work to define and implement a portability layer
• This type of action programming builds dependencies on a

specific configuration of deployment topology
• Implementation strategies/patterns are hard coded and cannot

be readily changed after coding starts
• It’s hard to learn how to write fast and safe C++ code. It is

harder to successfully teach others how. Perhaps hardest of all
is ensuring they always do it right, each time, each update.

• Implementation code is at the wrong level of abstraction for
models.

Platform-independent Action Language directly addresses these issues:

• Simple, extensible
• Direct support for UML at the PIM level
• Eliminates unsafe and inefficient constructs
• Platform independent:
• Rapid porting to new target environments
• Deployable to any topology – without change.

From the perspective of the development of high performance
systems, perhaps the most critical features PAL provides:

• It is translated to code, so the implementation
strategy/patterns can be updated and optimized at any time

21

Platform Independent Action Language

• Open transformation technology facilitates project-unique
optimizations.

But even beyond the technical benefits, PI-MDD is a response to
business drivers:

• It is easier to learn PAL than common implementation
languages

• PAL is commercially available – you don’t have to invest in
home-grown definition/invention/review processes and
automation

• PAL conforms to industry (OMG) standards
In the end it is the Bottom Line that trumps the rest:

• PAL is the key to PI-MDD, which drives productivity 2x and
higher.

22

Platform Independent Action Language

PAL SYNTAX SUMMARY
[optional item] {either | or} 0 or more iterations, …
All bolded characters (such as {|}, []) indicate actual use of these characters in PAL.Italic items are substitution items or comments.
All PAL keywords are case sensitive;// comments like C++; An Action Procedure has signal or service Parameters and a StatementBlock.

Statement
Assignment { AttributeAccessor | Parameter | LocalVariable | IncidentHandleParameter } = Expression ;
Break BREAK;
Continue CONTINUE;
LocalVarDecl DataType variable_name { = initial_value };
ConstantDecl [EXTERN] CONST DataType variable_name [= initial_value] ; - valid only in system or domain init. action
Invocation { Accessor | BuiltIn method}; - a procedure call with no return value
ForEach (class) FOREACH cursor_variable = CLASS class name [WHERE (Expression)] { StatementBlock }
ForEach (nav) FOREACH cursor_variable = Navigation [WHERE (Expression)] { StatementBlock }
If IF (Boolean Expression) { StatementBlock } [ELSE IF { StatementBlock }] [ELSE { StatementBlock }]
Return RETURN [Expression];
StatementBlock Statement…
While WHILE (Expression) { StatementBlock }
Order (class) ORDER CLASS class_name BY ([{ / | \ }] attribute_name, …);
Order (nav) ORDER Navigation BY ([{ / | \ }] attribute_name, …);
Order (group) ORDER GROUP [{ / | \ }] group;
Accessors
AttributeAccessor instance_ref . attribute_name
CreateIncidentHandle CREATE IncidentHandle ([parameter_name = Expression, …]) TO
 { domain_prefix | class_prefix }:service_name - returns a service handle
GroupItemIndex group[index] - 0-based index
InvokeIncidentHandle CALL service_handle ([parameter_name = Expression, …]) - no return
DomainServiceInvocation domain_prefix:service_name(Expression, …) - may have a return value
ClassServiceInvocation class_prefix:service_name(Expression, …) - may have a return value
InstanceServiceInvocation instance_ref . [class _prefix:]service_name(Expression, …) - may have a return value
SubSuperAccessor supertype_reference ->Srelationship_number->subclass_name - performs a "downcast"
AssociationAccessor [Link | Navigate | Unlink]
Link LINK [@role_phrase1] instance1_ref A<number> [@role_phrase2] instance2_ref
 [ASSOCIATIVE assoc_ref] - no return
Navigation (binary) [@role_phrase1] start_ref->A<number> [->@role_phrase2 dest_class_name]
Navigation (to assoc class) [@role_phrase1] start_ref_1 AND [@role_phrase2] start_ref_2 ->A<number>
Navigation (downcast) supertype_instance_ref-><subclass_name>
Unlink UNLINK [@role_phrase1] instance1_ref Anumber [@role_phrase2] instance2_ref
SignalAccessor { Cancel | Generate | ReadTime }
Cancel CANCEL signal_name [TO (destination_ref)]
Generate GENERATE signal_name (Expression, …) [AFTER (delay)] [TO (destination_ref)]
ClassAccessor { Create | Delete | Find }
Create CREATE class_name ([attribute_name = Expression, …]) [IN initial_state] - returns inst. reference
Delete DELETE instance_ref
Find (class) FIND [{ FIRST | LAST }] CLASS class_name [WHERE (Expression)] - returns an inst. reference or NULL
Find (nav) FIND [{ FIRST | LAST }] Navigation [WHERE (Expression)] - returns an inst. reference or NULL
Expression
accessors AttributeReference, SignalAccessor, ClassAccessor, AssociationAccessor, SubSuperAccessor
 BinaryOpExpression, Expression Operator Expression
BooleanLiteral { TRUE | FALSE }
CharacterLiteral 'character'
IntegerLiteral digit… - one or more digits
invalid reference NULL, EMPTY_SERVICE_HANDLE
LocalVariable variable_name
Parameter parameter_name
RealLiteral IntegerLiteral . IntegerLiteral [e [-] IntegerLiteral] - 3.45 or 3.45e-6
IncidentHandleParameter service_handle [parameter_name]
StringLiteral "character…" - use \ to embed "
UnaryOpExpression UnaryOperator Expression
Operators
Arithmetic + - * /% Bitwise & ^ |
Boolean < <= > >= && || == != Unary + - ~ !
DataTypes
[Boolean | Character | String | Real | Integer | GenericValue | Handle | Group<base_type> | GroupIter<base_type> | Ref<class_name> | IncidentHandle |
UserDefined enumeration | UserDefined typedef]
BuiltIn Methods - invoke via <expression>.<method>(args)
Group { addFront(item) | addBack(item) | insert(iter, item) | front() | back() | remove(item) | erase(iter) | removeAll() |size()}
GroupIter { current() | next() | previous() | finished() | front() | back() | setGroup(group) }

23

	Preface
	Audience
	Related Documents
	Conventions
	Getting Ready

	PI-MDD and PathMATE Overview
	PathMATE Toolset

	Introduction
	Action Overview
	What Are Actions?
	What Can Actions Do?
	What Makes Up an Action?
	How are Actions Used?

	Action Semantics
	Data Context
	Explicit
	Implicit
	Data Types

	Statements
	Data Manipulation
	Execution Flow Control
	Function Ins and Outs
	Expressions
	Variables
	Constants
	Accessors
	Signal
	Service and Operation Invocation
	IncidentHandle

	Built-In methods
	Expression Mechanics
	Arithmetic Binary Operators
	Bitwise Binary Operators
	Boolean Binary Operators
	Unary Operators

	Literals
	Attaching Marking Values to Statements

	Readable Code and Actions
	More Examples
	One More Time - So How Come We Don’t Just Put Code in the Mo

