
©2004 by Pathfinder Solutions

Transformation Engine

User’s Guide

Version 4.0

April 29, 2004

PathMATE™ Series

Pathfinder Solutions LLC

90 Oak Point

 Wrentham, MA 02093 USA

www.PathfinderMDA.com

508-384-1392

 ii

Table Of Contents

Preface...iii

PathMATE Overview ...iv

1. Introduction.. 1

2. Overview Of Model Transformation ... 2

Establishing Templates ..2

Verify Template Correctness ...3

Produce Target Document Set...4

Modeling Conventions and Restrictions...4

3. Introduction To Template Syntax .. 5

Basic Syntactic Elements..5

Template-Level Elements ...15

Control Structures ...19

Coloring ...23

4. Command Line Syntax... 25

Template File Search ...26

Formatting Modes: Unformatted/Formatted ..26

Template Parameter Values from the Command Line27

5. Templates and Sample Systems .. 28

A. Analysis Element Field Reference.. 29

B. Operators and Constants... 41

C. Capacities and Limitations .. 42

 iii

Preface

Audience

The Transformation Engine User’s Guide is for software engineers who

want to use PathMATE to create high performance systems.

Related Documents

These PathMATE documents are available at www.PathfinderMDA.com:

• Accelerating Embedded Software Development with a Model

Driven Architecture (white paper)

• PathMATE: Model Automation and Transformation Environment for

Embedded Systems (online brochure)

• PathMATE MDA Mentor Services (data sheet)

Conventions

The Quick Start Guide uses these conventions:

• Bold is for clickable buttons and menu selections.

• Italics is for screen text, path and file names, and other text that

needs special emphasis.

• Courier denotes code, or text in a log or a batch file.

• A Note contains important information, or a tip that saves you

time.

For New Users

If you are not familiar with the PathMATE toolset, read the overview

that begins on page iv. If you have not installed the PathMATE toolset

on your computer, obtain a password from your account manager and

download the software from www.PathfinderMDA.com. After

installation, use the PathMATE Quick Start Guide to become familiar

with the software tools.

 iv

PathMATE Overview

This overview introduces Model Driven Architecture (MDA) and the

PathMATE™ tools that make MDA work. MDA and PathMATE move you

from writing and debugging code to developing and testing the logic of

an embedded system. Over years of rigorous refinement in several

industries, PathMATE tools have proven their value in rapid and

effective embedded systems development.

PathMATE Toolset

The PathMATE Model Automation and Transformation Environment

includes all the tools required to transform your MDA models into high-

performance embedded systems (Figure 1).

Figure 1. PathMATE Toolset

The three parts of the PathMATE toolset cooperate to turn your models

into executable embedded systems:

• Transformation Engine – The Engine transforms platform-

independent models into working, embedded software

applications.

• Transformation Maps – Generate C, C++, or Java software with

off-the-shelf Transformation Maps, or create custom maps to drive

output for other languages or specific platforms.

• Spotlight – Verify and debug your application logic with Spotlight,

the most advanced model testing environment available.

No other MDA transformation environment offers a more open or

configurable set of development tools, designed to meet the

requirements of embedded systems engineers.

 v

How PathMATE Works

Use Model Driven Architecture to build complex embedded systems

that meet rigorous standards for speed and reliability. MDA works

because it separates what the system does from its deployment on a

particular platform. PathMATE adds these advantages:

• Greatest architectural control – A highly configurable

Transformation Engine enables you to optimize output for

resource-constrained platforms.

• Clean separation of model and code – Conforming to the MDA

paradigm, PathMATE models contain no implementation code.

That gives you fast and flexible deployment and migration

capabilities.

• Configurable, target-based model execution and testing –

Preemptively eliminate platform-specific bugs, minimize quality

assurance resources, and accelerate development.

• Lowest cost of ownership – Integrate PathMATE with your existing

UML editor. Build on your previous investment in training and

software.

• Speed – Even large transformations take just seconds with

PathMATE. That enables highly iterative model development, and

rapid transformation and test cycles.

Transformation Engine User’s Guide

1

1. Introduction

The PathMATE Transformation Engine extracts the semantic

information contained in your UML analysis models and presents it in

textual form via a flexible and simple template notation. The Engine

gives you the ability to completely navigate your model information

and shape it into code, documentation, and reports according to your

unique needs. This power and flexibility makes the Engine a

development environment component of cornerstone importance for

any projects applying the Unified Modeling Language (UML).

This User’s Guide is designed to help the analyst understand how to

use the Engine to transform analysis information through templates.

The reader is assumed to have a working knowledge of model based

software engineering. They are also expected to understand their

model editor, such as Rational Rose, and to be familiar with the Unified

Modeling Language.

“Model Based Software Engineering: Rigorous Software Development

with Domain Modeling,” introduces you to the terminology, concepts

and conventions you need to know to understand the contents of this

guide. The paper is available at www.PathfinderMDA.com.

Transformation Engine User’s Guide

2

2. Overview Of Model Transformation

Considering the task of transformation at the highest level, the goal is

to establish a set of instances of target documents with a set of UML

analysis data according to specified templates. The templates specify

the specific analysis information required, how it is arranged, and in

what context.

The above paragraph helps us identify the major tasks and

components of a transformation:

• Develop a set of templates to define our target document set.

• Employ the Engine to validate the correctness of the new

templates.

• Apply the proven templates with the Engine to produce the Target

Document Set.

Establishing Templates

This step focuses on the form of the result - the target documents.

This form is specified in the Engine template notation. The tasks are to

identify the set of target documents required, establish a typical

prototype instance for each element of the set, and then convert the

prototype into an template.

Identify Target Document Set

A Target Document set can be as simple as a custom report identifying

all object attributes with blank definitions, or as intricate as the

complete set of application-specific source code for your system. To

develop an effective set of templates, you must first know what they

are for.

• Establish the mission of the Target document set

• Gather any relevant requirements, such as coding standards and

base class headers, report format guidelines, etc.

• Establish the overall structure of the set via a class hierarchy

diagram, report topology description, etc.

Establish Target Prototype

Constructing a template from scratch using referential field specifiers

without an example to work from can be difficult. It is recommended

that a typical instance for each individual type of Target Document in

your Set first be constructed by hand.

• For each Target with a different form, select a single instance of

that Target based on your real analysis information.

• Construct the corresponding document by hand.

• Test it – for instance for a code template you could compile, link

against the implementation elements, and run it (then fix the

prototype if necessary).

Transformation Engine User’s Guide

3

Convert Prototype into Template

Once you are confident your prototype Target Document is correct,

you can then generalize this into a template:

• Determine the context of the document - does it correspond to

the entire system, a domain, object, attribute, event ... ?

Specify the context as a set of parameters at the top of the

template along with its name.

• Go through the body of the prototype, and for each element of

analysis information, substitute the correct analysis element

expansions, relative to the parameters you established at the top

of the template, or to other variables you’ve used elsewhere

(above this point) in this template.

• In sections where you referenced complete sets of analysis

elements - such as all attributes of an object - use a list iteration

construct.

• In areas where your prototype instantiates only one of a possible

set of alternatives, use an if-else block to capture the choices.

• You may break off portions of the prototype into separate

templates, or you may wish to chain your document together

hierarchically, using template invocations to make the parametric

connections.

• Arrange the templates as you would with any structured product –

one per file – perhaps in a directory structure.

Verify Template Correctness

Once the templates are in place, you should test each one. Start from

the bottom - where no other templates are invoked - and make sure

each has valid notational syntax by invoking the Engine with the -

parse_only switch. Then run through again extracting model

information, and verify that component produces correct results. Use a

limited amount of data initially before going out and attacking your

entire system as a test model.

Developing and refining templates is a form of software development,

and for large or complicated Target Document Sets you should allocate

sufficient time to accomplish the task in an orderly and thorough

manner - including testing and review time. Automatically translated

templates are a component of a very powerful technology, leveraging

a small amount of creative work across the bulk of an entire system.

This can mean widely and consistently applying sound engineering, or

equally vast propagation of error.

Transformation Engine User’s Guide

4

Produce Target Document Set

When the templates are completed, you can produce the desired

Target Document Set. This may be an ongoing process itself - such as

generating code against changing versions of the analysis. It could be

to fill a spot need – such as generating a custom report. It could also

be a one-time task – such as generating the review materials for a

high level review.

For more regular use of a set of templates on a project-wide basis,

place them under version control and make them available to the

project from a standard location. Provide scripts that apply the

templates in a uniform manner.

Modeling Conventions and Restrictions

The Transformation Engine requires that models to be transformed

conform to the modeling rules and conventions described in “MDA

Modeling Conventions.” If you use Rational Rose, also refer to

“PathMATE Modeler's Guide: Model Driven Architecture with Rational

Rose.” Both publications are available from www.pathfindermda.com.

Transformation Engine User’s Guide

5

3. Introduction To Template Syntax

An template is a template that is used to produce a textual document

with special fields denoting analysis information or control structures.

Let’s build a view of the notation by starting with the simplest

syntactic elements and work up.

All syntactic elements except free text are surrounded by [and] .

These delimiters are used in your templates to surround special

directives and substitution constructs.

This document uses a meta-syntax to present the syntactic elements

of the template notation (Table 1).

Table 1. Meta-Syntax for Template Notation

Meta-Syntax Description

<substitute> delimit specific fields filled in based on your particular
template, like <variable name>

[optional] indicates optional items - 0 or one

{ set } indicates a set of 0 or more items.

/ A | B | C / items within slashes separated by | indicate a mutually
exclusive set of choices

keyword special keywords in syntax elements are bolded - they are
to appear in your templates exactly as you see them here.

Basic Syntactic Elements

A syntactic element is a conceptual piece of an template. Everything in

an template is a syntactic element of one type or another.

Free Text

Free text is everything in an template that is not explicitly enclosed in

[and] delimiters. This text is copied directly into the target

document. A \ (backslash) escapes special meaning for the following

character. It is used to allow the "[" and "]" characters to appear in

free text and pass through unparsed: "\[" and "\]". To make a "\"

appear in the target document, use two in free text: "\\".

Whitespace in Free Text

In order to balance the formatting and readability needs of both the

templates and resulting target documents, whitespace appearing

outside delimited syntactic elements is either used to help format and

clarify the template itself, or is intended for the contents of the target

document(s). To support both roles for whitespace, we must evaluate

whitespace-only (composed of spaces or tabs, or newlines) free text

elements in the template context in which they are encountered.

Transformation Engine User’s Guide

6

In all models, an entire template line is considered as a whole. A single

free text element cannot span line breaks. The algorithm is:

• If a line has nothing but whitespace free text, they are emitted

into target documents

• If a line has nothing but whitespace free text and non-emitting

syntactic elements, these free text elements are not emitted into

target documents

• If any free text element of a line contains more than just

whitespace, then all free text elements on the line are considered

intended for the target document.

• If any syntactic element of a line is classified as “emitting”, then

all free text elements on the line are considered intended for the

target document.

“Emitting” syntactic elements are: DATE, EXPAND, EXPORT, AND

FILTER (see Template-Level Elements on page 15 for more information

on these syntactic elements).

For these purposes, the beginning and end of the template file are

considered non-emitting syntactic elements

Expressions

There are three primitives used to present analysis information or

other values (including constant information) in a template: a

variable, a field, and a constant. Any single instance of these

primitives or sets of them combined with operators are considered

expressions. All valid expressions resolve to a single value of at any

one point in time. All valid expressions result in a value of a specific

type.

A limited amount of mixed-type expressions are allowed, as specified

below in the specific base data type sections.

Base Data Types

Boolean

The type indication Boolean indicates a variable that can equal TRUE

of FALSE. A Boolean constant is specified as TRUE or FALSE.

unary operator: “!” logical NOT

binary operators: “&&” and “||” logical AND and OR

 “==”, “!=”, “<”, "<=", “>” comparison

 and ">="

Operands for binary comparison operators may be of any type - see

corresponding sections below for how these are applied.

Transformation Engine User’s Guide

7

Float

The type indication Float indicates a C-language double on the native

platform. A floating point constant is specified as two sets of

concatenated digits, separated by a 5.6778 or 0.0.

unary operator: “-“ negate

binary operators: “+”, “-”, “*”, and “/” arithmetic operations

• Integer expressions can be used as one operand in a Float

expression

• Integer expressions can be compared to Float expressions

Integer

• The type indication Integer indicates C-language int on the

native platform. An integer constant is specified as a

concatenation of digits as in 1024, or 2 .

unary operator: “-“ negate

binary operators: “+”, “-”, “*”, and “/” arithmetic operations

• Arithmetic operations combining Integer and Float expressions are

Float expressions

• Integer expressions can be compared to Float expressions

String

The type indication String indicates a variable length concatenation of

ASCII characters. A string constant is specified as any set of

characters contained within double quotes - " " , such as :

 "Hi there"

 "conundrum"

 "-- HEY! --\n"

To insert a double-quote (") in a String constant, use \" as in: "this is

an embedded double-quote: \" - there - we did it."

unary operator: - NONE -

binary operators: “+” concatenate

• Order-based comparisons use ASCII order

• Strings can be compared to the built-in constant EMPTY_STRING

with “==” and ”!=”

StringList

To support the manipulation of lists of strings, a variable of type

StringList can be constructed. This is done specifically to support the

SPLIT function (see String Parsing on page 20). A variable of this type

can be in the same manner as a list of analysis elements, with a

FOREACH element.

Transformation Engine User’s Guide

8

Variables

A variable contains and preserves (until overwritten) a piece of

analysis information. It can be a handle to other analysis elements or

an atomic value (integer, string, etc.). A variable is created with a

signature, via an assignment, or as the index variable of a list iteration

construct.

Variables are assigned their type explicitly in a signature directive. For

the assignment and list iteration, the type of the analysis element

assigned to the variable implicitly determines its type. The variable

cannot be used before it is assigned in some way.

The scope of a variable is within a single template, however any

variables used as actual parameters in a template invocation (expand)

are passed by reference to the invoked templates to facilitate outputs.

The scope of a variable declared anywhere in an template - even in an

iteration variable can be used after its ENDFOREACH.

The name of a variable must start with a letter, and can be made up of

any combinations of letters, digits, and underscore characters. A

variable name cannot be the same as any of the keywords of this

template notation:

ARCHETYPE
TEMPLATE
ASSIGN
BREAK
DATE
DIAGRAM
ELSE
ENDFOREACH
ENDIF
ENDWHILE
EXPAND
FILTER
FOREACH
IF
LOOKUP
OUTFILE
PROPERTY
SPLIT
SPRINGBOARDVERSION
STRTOID
STRTOINT
WHILE

Also, a variable name cannot be one of the type names available,

including the base types:

String
Integer
Boolean
Float
AnalysisElementType

Transformation Engine User’s Guide

9

or one of the analysis element types defined in the "analysis element

type" column of the analysis element field table in Analysis Elements

on page 9 (these range from "System" to "Parameter").

Fields

A field is a reference to a specific sub-element of analysis information

contained in a base analysis element. The fields available for each type

of analysis element are defined in Appendix A. The general syntax for

a field reference is:

 <field base>.<field name>

where <field base> is a variable or field that is a handle to an analysis

element, and <field name> comes from the "field name" column of

Analysis Elements on page 9.

Analysis Elements

In addition to the base data types, syntactic elements can be of a type

derived from the analysis elements.

Enumeration of Analysis Element Types

Corresponding to each leaf type of analysis element is an enumerate

value. These values range from "System" to "Parameter ". When

comparing or assigning to syntactic elements of this type, use the

actual analysis element type name as indicated in Enumeration of

Analysis Element Types on page 9. Fields of this type are referred to

as an "Analysis Element Type."

Handle to Analysis Element

One instance of an analysis element can have a "handle" to another

instance - this is the equivalent of a C-language pointer. When

comparing against or assigning to syntactic elements of this type, use

the integer constant 0 to indicate an empty handle, or use a variable

containing an analysis element.

Variables of this type can be used as the base of a field specification,

where the variable name is followed by a dot separated list of field

names such as "obj.name", "this_state.initiatingEvent.name", and

"obj.relationships".

List of Handles to Analysis Elements

Some analysis element fields contain a list of handles to other analysis

elements. Use a list iteration control structure – described in List

Iteration on page 19 – to traverse these lists, or get their counts. The

name of a list type is "<analysis element type name>List".

The number of members in any list can be accessed as an integer

expression, simply by using the variable or field that corresponds to

the list. For example, to see if a domain is analyzed, use the following

expression:

"[IF (domain.objects > 0)]"

Transformation Engine User’s Guide

10

Analysis Elements

An analysis element is a component of your analysis models, and is of

an analysis element type. Each analysis element type has a set of

information associated with it, arranged in fields. Each field is of a data

type: see Base Data Types on page 6 above for a detailed description

of each data type.

An analysis element appears in your template as a variable, or a

variable appended with a set of field names (dot separated). Variables

are discussed in more detail below.

The textual representation of an analysis element is expanded in your

target document by placing it within the syntactic element delimiters in

an export construct:

[<analysis element>]

Please note that fields and variables that are handles to analysis

elements or list of handles to analysis elements cannot be exported.

Some analysis element types are supertypes of other analysis element

types. This is indicated by an “is either” reference in the analysis

element type’s description.

Transformation Engine User’s Guide

11

Analysis Element Linkage Table

This is a “top-down” hierarchical view of how the analysis elements

relate to each other. Please refer to Appendix A for a complete

description of all analysis elements and their fields.

System-Level Elements

DataTypeScope (isA System, Domain)
 userDefinedTypes (UserDefinedTypeList)
System
 diagrams(DiagramList)
 domains (DomainList)
Domain
 clients (BridgeList)
 diagrams(DiagramList)

 objects (ObjectList)
 relationships (RelationshipList)
 servers (BridgeList)
 services (DomainServiceList)
 supportDiags (StringList)
 subsystems(SubsystemList)
 userDefinedTypes (UserDefinedTypeList)
Bridge
 clientDomain (Domain)
 serverDomain (Domain)
Subsystem
 diagrams(DiagramList)
 domain(Domain)

objects(ObjectList)
parent(Subsystem)
services(DomainServiceList)
subsystems(SubsystemList)

Diagram
 scope(AnalysisElement)
AnalysisElement
 stereotype(Stereotype)
 properties(PropertyList)
Stereotype
 extendedElements(AnalysisElementList)
Property

Transformation Engine User’s Guide

12

Class-Level Elements

Object
 accessors (ObjectAccessorList)
 allAttributes (AttributeList)
 associatedRelationship (BinaryRel)
 attributes (AttributeList)
 defaultInitialState(State)
 diagrams(DiagramList)
 domain (Domain)
 events (EventList)
 participants (ParticipantList)
 receivedEvents (EventList)
 services (ObjectServiceList)
 sortStatements (AttributeSortList)

 states (StateList)
 subsystem(Subsystem)
 subTypes (ObjectList)
 superTypes (ObjectList)
 superTypeInRels(SubSuperRelList)
Attribute
 accessors (AttributeSelectionList)
AttributeOrdering
 statement (AttributeSort)
Participant
 relationship (BinaryRel)
 relative (Participant)
Relationship (isA BinaryRel, SubSuperRel)
BinaryRel
 accessors (RelationshipAccessorList)
 associativeObject (Object)
 participant1 (Participant)
 participant2 (Participant)
SubSuperRel
 subTypes (ObjectList)
 superType (Object)
 subTypeNavigations (SubSuperNavigationList)
SubSuperNavigation
 destination (Object)
 sourceInstance (Expression)
 subSuperRel(SubSuperRel)
Event
 accessors (EventAccessorList)
 destination (Object)
 parameters (ParameterList)
State
 defaultInitialState(State)
 entryAction(Action)
 exitAction(Action)
 incomingTransitions(NewStateTransitionList)
 initiatingEvents (EventList)
 nestedStates(StateList)
 nextStates (StringList)
 object (Object)
 outgoingTransitions(TransitionList)
 parent(State)
Transition (isA NewStateTransition, NonStateTransition)
 initiatingEvent(Event)
 source(State)
NewStateTransition

 action(Action)
 destination(State)
 guard(Action)

Transformation Engine User’s Guide

13

Services

Service (isA DomainService, ObjectService)
 action (Action)
 invokers (ServiceInvocationList)
 parameters (ParameterList)
DomainService
 domain (Domain)
 invokers (ServiceInvocationList)
 parameters (ParameterList)
ObjectService
 invokers (ServiceInvocationList)
 object (Object)
 parameters (ParameterList)
 polymorphism(PolymorphismType)

Action
 actionBlocks (StatementBlockList)
 expressions (ExpressionList)
 statements (StatementList)
 variables (VariableDefinitionsList)
StatementBlock
 statements (StatementList)

Action Statements

Statement (isA Assignment, AttributeSort, Break, Continue, CreateServiceHandle,

ForEach, GroupSort, If, Invocation, InvokeServiceHandle, Return, WhileLoop)
Assignment
 lvalue (Expression)
 rvalue (Expression)
AttributeSort
 attributeOrderings (AttributeOrderingList)
 navigation (Expression)
 object (Object)
CreateServiceHandle
 lvalue (Expression)
 parameters (NameValuePairList)
 service (Service)
ForEach
 index (Expression)
 loopBlock (StatementBlock)
 navigation (Expression)
 object (Object)
 whereClause (Expression)
GroupSort
 subject (Expression)
If
 condition (Expression)
 elseBlock (ActionBlock)
 ifBlock (ActionBlock)
Invocation
 invokee (Expression)
InvokeServiceHandle
 handle (Expression)
 parameters (NameValuePairList)

Return
 returnValue (Expression)
WhileLoop
 condition (Expression)
 loopBlock (ActionBlock)

Transformation Engine User’s Guide

14

Action Expressions

Expression (isA AttributeSelection, BinaryExpression, Constant, EventAccessor,
LocalVariable, MethodInvocation, ObjectAccessor, ParameterVariable,
RelationshipAccessor, ServiceInvocation, UnaryExpression)
AttributeSelection
 instance (Expression)
BinaryExpression
 operand1 (Expression)
 operand2 (Expression)
EventAccessor (isA Cancel, Generate, ReadTime)
 destination (Expression)
 event (Event)
Generate
 arguments (ActualParameterList)

 delay (Expression)
LocalVariable
 declaration (VariableDefinition)
VariableDefinition
 initialValue (Expression)
MethodInvocation
 arguments (ActualParameterList)
 subject (Expression)
ObjectAccessor (isA Create, Delete, Find)
 object (Object)
Create
 initialState (State)
 parameters (NameValuePairList)
Delete
 instance (Expression)
Find
 navigation (Expression)
 whereClause (Expression)
RelationshipAccessor (isA Navigation, Link, Unlink)
 relationship (BinaryRel)
Link
 assocInstance (Expression)
 instance1 (Expression)
 instance2 (Expression)
Navigation
 destParticipant (Participant)
 sourceInstance1 (Expression)
 sourceInstance2 (Expression)
Unlink
 instance1 (Expression)
 instance2 (Expression)
ServiceInvocation
 arguments (ActualParameterList)
 service (Service)
 subject (Expression)
UnaryExpression
 operand1 (Expression)
ActualParameter
 value (Expression)

Transformation Engine User’s Guide

15

List Sort Ordering

Fields that are lists of certain types of analysis element are sorted by

name:

Attribute
Domain
Event
Object
Relationship
Service
State

Lists of analysis element types not listed in this section are kept in the

order they appear in the analysis, or are not sorted.

Template-Level Elements

Signature

The signature directive gives the template its name and argument list

- its profile. Exactly one must appear in every template, as the first

non-comment syntactic element.

[ARCHETYPE <template name> ({<inputs>}; {<outputs>})]

where

<inputs> are a comma-separated list of: <data type> <variable

name>.

<outputs> are a comma-separated list of: <data type> <variable

name>.

<data type> is a type defined in Base Data Types on page 6.

<variable name> is the name of the template variable used as the

formal parameter.

Input parameters are passed by value, and outputs are passed by

reference. When invoking an template, variables must be used as

actual parameters that correspond to output parameters, or an error

will result.

Top-level templates (invoked directly from the command line) can

have no outputs.

Transformation Engine User’s Guide

16

Variable

The variable declaration creates a variable of a specific type within the

scope of the template (even if it is nested within a loop or if/else). It

sets the initial value of the variable.

[VARIABLE <variable type> <variable name> = <expression>]

You can declare a list variable like any other. See List Construction on

page 21 for information about how to populate a list. Do not specify an

initial value:

[VARIABLE <variable type>List <list variable name>]

Assignment

The assignment creates a variable within the scope of the template

(even if it is nested within a loop or if/else). It also casts a type on the

variable - based on the analysis element used as the right hand value.

If a variable is reused, the old value is overwritten. If an assignment of

the wrong type right hand value is made to an existing variable, a

production-time error results.

[ASSIGN <variable name> = <expression>]

Invocation

The any template can be invoked from within the current template.

Expressions used as actual parameters must match the formal

parameters specified in the invokee’s signature. Input parameters are

passed by value, and outputs are passed by reference. When invoking

a template, variables must be used as actual parameters that

correspond to output parameters, or an error will result.

Invocations do not affect target document context - until a new file

indicator is encountered in the new template, all output from the

invokee goes into the currently indicated file.

[EXPAND <template name> ({<inputs>}; {<outputs>})]

where

<inputs> are a comma-separated list of: <expression>

<outputs> are a comma-separated list of: <variable name>

<variable name> is the name of the template variable used as an

output actual parameter

During production, the calling template's variable values are updated

as the called template modifies them.

Transformation Engine User’s Guide

17

File Indicator

Unless otherwise directed, all output from an template goes to

standard output. The file indicator opens the indicated file for

write/overwrite access, creating a new one if it is not found. If another

file (with a different name) was already open, it is pushed onto a file

context stack, and the newly opened file is used.

[OUTFILE <output file name>]

where

<output file name> is a string value (see String on page 7)

To close an output file and pop back to the previous file context, the

close directive is used. If a close is encountered on the highest context

in the stack any further output will go to the standard output stream.

If no file is currently open, then a warning will be issued.

[CLOSEOUTFILE]

Filters

A filter is a special type of string expression that executes a script or

program with a specified command line. The output of this execution is

captured and returned as the value of the string expression. The

argument of the filter - the command line string expression - must be

constructed explicitly, and include the program name, its full path (if it

is not available through the PATH) and all switches and parameters.

[FILTER <command line string expression>)]

Date/Time Stamp

This element emits the date and time the current transformation

session was started into the target document. This is done to ensure

all documents generated from a single session are marked with the

same date/time. This directive expands to <day> <month> <date>

<hh>:<mm>:<ss> <year>, as in:"Wed Mar 27 15:30:38 1996".

[DATE]

Engine Program Version

This element emits the name and version of the Springboard program

used. This can be useful in a configuration management setting to help

identify the versions of the tools used. This directive expands to

"sprngbrd version <version number> <version qualifier> (<build

date>)", such as "sprngbrd version 1.104 Beta (7/9/96)".

[SPRINGBOARDVERSION]

Transformation Engine User’s Guide

18

Comment Block

Comments are used to explain your template, and are inserted within

the delimiters ("[]") of any syntactic element. They do not appear in

the resulting target document. They are patterned after C-language

style comments.

[... /* <any free text for comment including newlines, etc...> */ ...]

A typical use is to help associate related syntax elements, such as [IF

...(foo)...] and [ENDIF /* check foo */]

Delete Analysis Element

To delete an analysis element from the model:

[DELETE <expression>]

where expression is the analysis element to be deleted.

Delete performs a shallow delete. For example, if an object is deleted,

its attributes and operations are not deleted. Delete may cause

dangling references. For example if an object is deleted, any action

language CREATE statements that reference that object will have NULL

object fields.

Delete may be performed within a FOREACH in the same template. For

example, the following template is allowed:

[ARCHETYPE prune(System system)]
[FOREACH domain IN system.domains]
 [FOREACH object IN domain.objects]
 [IF (PROPERTY(object, "Generate", "T")
== "F")]
 [DELETE object]
 [ENDIF]
 [ENDFOREACH]
[ENDFOREACH]

But the following is NOT allowed:

[ARCHETYPE prune(System system)]
 [FOREACH domain IN system.domains]
 [FOREACH object IN domain.objects]
 [IF (PROPERTY(object, "Generate", "T")
== "F")]
 [EXPAND delete(object)]
 [ENDIF]
 [ENDFOREACH]
[ENDFOREACH]

[ARCHETYPE delete(Object object)]
 [DELETE object]

Transformation Engine User’s Guide

19

Control Structures

If-Else

Decisions about which portion of a template to expand (or which to

invoke) can be made with If-Else blocks. The Boolean expression

provided in the IF is evaluated when the statement is encountered (at

target document production time). The else-block is optional.

For more information on Boolean expressions, please see Boolean on

page 6.

[IF (<boolean expression>)]

 { <if-block syntactic elements> }

[ELSE]

 { <else-block syntactic elements> }]

[ENDIF]

Refer to Comment Block on page 18 for details on how to associate

control structure components with comments.

While Loop

While loops iterate over template statements in the loop body while

the Boolean test condition evaluates to TRUE.

For more information on Boolean expressions, please see Boolean on

page 6.

[WHILE (<Boolean test expression>)]

 {<loop body>}

[ENDWHILE]

List Operations

Some syntactic elements contain lists of analysis information. There

are constructs to traverse a list, determine the number of elements in

a list, or return a specific item from a list.

List Iteration

Use this to loop through the entire list. An optional separator string

can be specified for placement between loop body expansions.

[FOREACH <index-variable> IN <list-element> [SEPARATOR

"<separator string>"]]

 { <iteration block syntactic elements> }

[ENDFOREACH]

To exit the iteration before the end of the list, put a [BREAK]

directive within the iteration block, at the point where you've decided

to stop looping.

Transformation Engine User’s Guide

20

Specific List Elements

A list expression can be indexed, resulting in the value of a single

element of a list. The index of a specific list element can be specified

parenthetically to access that single element of a list. This is used in

circumstances where an expression of the type of a single element of

the list is required. (Please refer to Expressions on page 6 for more

information on the use of an expression.) Any Integer expression can

be used to specify the index - 1 references the first element. A

production-time error results if there is no list element in the specified

position.

<syntactic element of a list type>(<position>)

example: to reference the first attribute of the object obj, use:

obj.attributes(1)

String Parsing

To support the extraction of substrings from a string, the SPLIT

function is provided:

<StringList variable> = SPLIT (<string expression to be parsed>,

<string of separator characters>)

This operator works very much like a series of calls to the standard C-

language utility function strtok(): the input string is broken up on

the occurrence of any of the separator characters.

SPLIT is a StringList expression - it can be used in an ASSIGN or

FOREACH syntactic element. If the <string expression to be parsed> is

empty, or no tokens are found, EMPTY_STRING is returned.

NOTE - the <string expression to be parsed> is not modified, unlike
strtok().

String Conversion

Conversion from strings to analysis element pointers is provided by

the STRTOID expression:

<analysis element variable> = STRTOID(<string expression to

convert>)

Conversion from strings in base 10 to integers is provided by the

STRTOINT expression:

<integer variable> = STRTOINT(<string expression to convert>)

Note: Integers and pointers are converted automatically to strings. If

a template assigns an integer or pointer variable to a string, the

numeric value is converted to a string and stored in the string variable.

Integers are represented in strings using base 10. Pointers are

converted to ID(0x<hex pointer value>).

Transformation Engine User’s Guide

21

The STRTOID and STRTOINT functions are helpful for storing integer

and pointer values as properties of analysis elements. For example,

[ARCHETYPE top(System system)]
[ASSIGN PROPERTY(system, “NumberOfInstances”) =
“5”]
[ASSIGN number_of_instances =
STRTOINT(PROPERTY(system, “NumberOfInstances”,
“0”))]
[ASSIGN counter = 1]
[WHILE (counter <= number_of_instances)]
 instance [counter]
[ENDWHILE]

List Population Count

A list variable or field can be used as an Integer expression to

determine how many items are in the list. The following example

shows the use of the field subtypes of the Object obj in an IF

construct:

[IF (obj.subtypes > 0)]

[/* do something with the subtypes */]

…

[ELSE]

 [/* there are no subtypes */]

…

[ENDIF]

List Construction

The Insert directive allows elements to be inserted into a list variable:

[INSERT <where> <allow_duplicates> <element> INTO

<list_var_name>]

<where>: indicates where to add the new element. Default is BACK.

The following locations are supported:

FRONT - inserts <element> in the first position in the list

BACK - inserts <element> in the last position in the list

SORTED_UP - inserts <element> so it is in ascending sorted order –

assumes <list_var_name> is already sorted

SORTED_DOWN - inserts <element> so it is in descending sorted

order - assumes <list_var_name> is already sorted

<allow_duplicates>: specify the keyword UNIQUE if the element

should only be added if the element value is not already in the list. If

UNIQUE is not specified, the element will be added to the list in the

location specified even if it is already in the list.

<list_var_name>: name of the list for insertion

Transformation Engine User’s Guide

22

Remove deletes the front or back element from the specified list

variable:

[REMOVE {FRONT | BACK} FROM <list_var_name>]

Remove deletes the first matching element, the last matching element,

or all matching elements from the specified list variable:

[REMOVE {FIRST | LAST | ALL} <element> FROM

<list_var_name>]

examples:

[/* insert non-unique to the back of the list*/]
[VARIABLE StringList include_files]
[INSERT "stdio.h" INTO include_files]
[INSERT "ctype.h" INTO include_files]
[/* list is "stdio.h", "ctype.h" */]

[/* insert in ascending sorted order */]
[VARIABLE StringList sorted_strings]
[INSERT SORTED_UP "pear" INTO sorted_strings]
[INSERT SORTED_UP "apple" INTO sorted_strings]
[/* apple is not added again since we are adding
uniquely */]
[INSERT SORTED_UP UNIQUE "apple" INTO
sorted_strings]
[INSERT SORTED_UP "pear" INTO sorted_strings]
[/* list is "apple", "pear", "pear" */]

[/* remove all instances of "pear" */]
[REMOVE ALL "pear" FROM sorted_strings]
[/* list is "apple */]

[REMOVE FRONT FROM include_files]
[/* list is "ctype.h" */]

Note: Lists may be passed as input or output parameters to archetype

invocations. A local copy of the list is made when removing or inserting

into an input archetype parameter. Any changes made to an input list

parameter are not reflected in the calling context. Insertions and

removals from an output parameter are passed back to the calling

context.

Lists derived from fields cannot be modified by INSERT and REMOVE.

The archetype interpreter makes a copy of all lists when they are

modified:

[VARIABLE object_list = system.domains(1).objects]

[/* INSERT makes a copy of the list returned from the field

Domain.object */]

[INSERT object_list(1) INTO object_list]

Transformation Engine User’s Guide

23

Analysis element iteration

To iterate over all the instances of an analysis element type in the

model, use the ALL expression.

ALL(<element type name>)

For example, to iterate over all the objects in all domains, use the ALL

expression as follows:

[FOREACH object IN ALL(Object)]

[ENDFOREACH]

Note: The <element type name> must be the name of a type and not

a variable of type analysis element type.

Analysis Element lookup

To lookup an analysis element by its qualified name, use the LOOKUP

expression.

<analysis element variable> = LOOKUP(<element name>, <element

type name>)

For example, to find the domain with prefix SW in the system

Robochef, do the following:

[ASSIGN robochef_domain = LOOKUP(“Robochef.FP”, Domain)

NOTE: The <element type name> must be the name of a type and not

a variable of type analysis element type.

In-Line Diagrams

If one of the formatted document command line options is specified

(see Command Line Syntax on page 25), then UML diagram references

can be placed into the target document with:

[DIAGRAM <diagram name>]

This syntactic element takes the name of a diagram - use a field

marked "use with DIAGRAM" from Analysis Elements on page 9.

Coloring

Analysis augmentation or design information can be attached to

analysis elements as coloring information, and be accessed for any

analysis element via the PROPERTY construct. Support for this

feature is MODEL dependent - some analysis element types do not

have support for coloring information capture in some tools. Typically

analysis elements with description fields also support coloring.

Properties are captured in the MODEL environment as name-value

pairs, where the names are project-specific string constants. The

property construct is a special type of string expression that returns

the value of a named coloring property of a specified analysis element.

If no value is specified for the named property, or if no property has

the target name, then a production-time warning results and the

default value specified is returned.

Transformation Engine User’s Guide

24

PROPERTY (<analysis element handle field>, <property name>,

<default property value>)

PROPERTY (<analysis element handle field>, <property name>)

Please note: <property name> and <default property value> must be

String expressions.

Transformation Engine User’s Guide

25

4. Command Line Syntax

Invoke the Transformation Engine through the springboard console

application, which you can run from a shortcut, makefile, or DOS shell

window using a command line interface. The command line syntax is:

springboard <options> <top template name> <top
template parameter values ...>

where:

<options> is any combination of:

-Buffer_size <size> Sets the ODBC buffer size for extract. Must be at least
3500. Default: 10000 (System Architect only).

-Config <file> Specify the name of the action language expression
config file. Default: <path install>/config/ pfdexp.cfg.

-Dir <dir> search <dir> for templates. The current working directory
is always searched first, and 0 or more directories may
be specified, each with its own -dir option.

-Encyclopedia <dir> explicitly specify the UML database source so an ODBC
data source is not needed (System Architect only).

-EXtract_only only extract MODEL database information and issue
extraction errors. Do not parse templates and generate
target documents. Default: extract, parse, and create
target documents.

-Ignore_errors proceed with extraction even if there were parsing
errors; proceed with production even if there were
parsing or extraction errors. Default: stop after first
production error.

-Output <dir> use <dir> as root for any relative pathnames specified in
OUTFILE directives. Default: current working directory.

-PArse_only only parse this template and any it invokes recursively,
report any template syntax warnings or errors, and do
not generate any code. Default : generate code once the
templates are parsed.

-Suppress <cat> <msg #>: suppress reporting of a specific message.
 Default: report all messages.

-Xml <file> Specify the name of the XML file containing the analysis
in XMI format (Rose only).

<top template name> name of the top-level template

<top template parameter values ...> values used as arguments to the top-level
 template

Notes:

• The first template parameter value must specify the target

system, or an analysis element within the system.

• Option keywords are model-insensitive

Transformation Engine User’s Guide

26

Template File Search

The -dir option operates like a C compiler’s -I option. The current

working directory is searched first, and then each directory specified

with -dir is searched in order. To find the to-level template, the Engine

searches each directory: it first tries to find <template name>.arc,

and if this doesn’t exist, then <template name>.rtf is tried.

For subsequent EXPANDed templates (not top-level), only .arc files

are selected, ignoring .rtf files.

Formatting Modes: Unformatted/Formatted

The formatting mode is determined by the extension of the file

containing the top-level template. For .arc files, Unformatted mode is

used. For .rtf files, Formatted mode is used.

Unformatted mode:

• All templates files have .arc extensions

• Plain, ASCII text is expected in all templates

• Only textual output is supported - no DIAGRAM directives are

allowed

• All templates files are expected to have .arc extensions

Fomatted mode:

• The top level template file has a .rtf extension, all other

subsequently expended templates files have .arc extensions

• The top level template file is expected to be a Rich Text Format

file

• The DIAGRAM directive is supported

Note: Be sure to turn off “Smart Quotes” in Microsoft Word with Tools

> Options > AutoFormat. In formatted mode, it may be helpful to use

a separate Word style for Engine directives (syntactic elements – in “[

]”). Then you may wish to choose to make the style invisible to help in

whitespace management, or to aid readability of the template.

Generated documents containing diagrams contain only a reference to

the diagram image file (.wmf). This means that the original model

support files area must be available for the documents to appear. To

make a document "transportable" off the network they were generated

on, use MS Word to convert these references to insertions: in Word go

to Edit->Links, select all Source Files, click "Save Picture in

document", and then hit "Break Link". This will pull the contents of the

inserted diagrams’ .wmf files into the Word document. It is also

recommend that at this point you do a Save As and make it a Word

document (.doc) - it speeds subsequent open times and saves disk

space.

Transformation Engine User’s Guide

27

Template Parameter Values from the Command Line

The number and type of template parameter values must match the

arguments specified in the template's signature. See Base Data Types

on page 6 for information on how to construct constants of each base

data type. For formal parameter types that correspond to analysis

elements, a fully qualified name for the analysis element instance

must be provided. The following types of analysis elements may be

specified through a fully qualified name on the command line:

System <system name>

Domain <system name>.<dom prefix>

DomainService <system name>.<dom prefix>.<service name>

Subsystem <system name>.<dom prefix>.<subsystem name>

Stereotype <stereotype name>

BaseType <type name>

GroupType <type name>

GroupIterType <type name>

UserDefinedType <scope qualified name>.<enumerate name>

InstanceReferenceType <system name>.<dom prefix>.<obj prefix>.Ref<<class
 name>>

Object <system name>.<dom prefix>.<obj prefix>

ObjectService <system name>.<dom prefix>.<obj prefix>.<service
 name>

Parameter <service qualified name>.<parameter name>

Attribute <system name>.<dom prefix>.<obj prefix>.<attr name>

Association <system name>.<dom prefix>.A<rel num>

Participant <system name>.<dom prefix>.A<rel num>.<object
 name>[.<role name>]

SubSuperRel <system name>.<dom prefix>.S<rel num>

State <system name>.<dom prefix>.<obj prefix>.<state name>

Event <system name>.<dom prefix>.<obj prefix>.<event label>

Note: Text in [] is optional. For example, if a Participant does not have

a role name, the role name and its preceeding period are omitted from

the qualified name.

Transformation Engine User’s Guide

28

5. Templates and Sample Systems

Complete code and report template examples exist online with your

PathMATE product installation. If you installed PathMATE in the default

installation directory, you can find the templates and sample models in

these directories:

Report templates reside in

C:\pathmate\reports

and have report examples that include simple ASCII text, fully

formatted Word documents, HTML, and consistency checking.

Code generation templates for C++ reside in

C:\pathmate\design\cpp\templates

Start with the template sys_top.arc. Code generation templates for C

and Java are available if you purchased these modules.

The Carsuffle, Robochef, and SimpleOven sample systems reside in

C:\pathmate\samples

The models for these systems are provided in Rational Rose, and serve

as examples of a valid MDA systems.

Transformation Engine User’s Guide

29

A. Analysis Element Field Reference

The analysis elements correspond convey the information captured in

your UML models. Please refer to Base Data Types on page 6 for a

description of the data type for each field.

For analysis elements that are subtypes, all available fields are listed

including the fields already defined for the supertype.

Action: supertype: AnalysisElement; subtypes:none; a procedure or operation

actionBlocks (StatementBlockList) : the blocks of PAL statements that make up this action; the first
block is the "root block" containing the entire action; the rest are in sequential order

actionText (String) : the actual PAL statements for this action in raw textual form.
expressions (ExpressionList): the list of all expressions in this action (in all blocks)
scope(AnalysisElement) : The Domain this action is in (or its System, in the case of a system init).
statements (StatementList) : the complete list of all statements for this action, ignoring block

boundaries
type (AnalysisElementType) : always is Action
variables (VariableDefinitionsList): the definitions of all local variables defined in this action

ActualParameter: supertype: AnalysisElement; subtypes: none; an actual parameter that uses
position-association
value (Expression) : the actual parameter value

AnalysisElement: supertype: none; subtypes:; an element of the model
type(AnalysisElementType): type of the analysis element
id(String): unique identifier valid for this session only
properties(PropertyList): list of name-value pairs associated with this model element
diagrams(DiagramList): list of diagrams associated with this model element
qualifiedName(String): fully qualified name of the model element
stereotype(Stereotype): extension applied to this model element. May be 0 if not extended.
uuid(String): unique identifier assigned to model element by the modeling tool. Does not change

from session to session.

Assignment: supertype: Statement; subtypes: none; the assignment of a new value to an
attribute or variable in an Action
block (ActionBlock) : the ActionBlock this is contained in
lineNumber (Integer) : relative to the top of the entire action (top line == 1)
lvalue (Expression) : the assignee
rvalue (Expression) : the new value for the assignee
type (AnalysisElementType) : always is Assignment

Attribute: supertype: AnalysisElement; subtypes: none

accessors (AttributeSelectionList) : all PAL expressions that access this attribute
dataType (DataType)
description (String)
langId (String) : name sanitized for use as a C-language identifier

object (Object)
name (String)

AttributeOrdering: supertype: AnalysisElement; subtypes: none; the use of an attribute in an

AttributeSort
ascending (Boolean) : indicates the sort direction
attribute (Attribute)
statement (AttributeSort)

Transformation Engine User’s Guide

30

AttributeSelection: supertype: Expression; subtypes: none; an expression that reads or writes
an attribute value
action (Action): the action this is in
attribute (Attribute)
dataType (DataType) : matches the attribute's dataType
instance (Expression) : the object instance this is an attribute of (== 0 in a Where clause)
isWrite (Boolean) : indicates if this is reads or writes the attribute value
type (AnalysisElementType) : always is: AttributeSelection

AttributeSort: supertype: Statement; subtypes: none; reorders a group of instance references
based on attribute values
attributeOrderings (AttributeOrderingList) : the list of AttributeOrderings that control this sort
block (ActionBlock) : the ActionBlock this is contained in
lineNumber (Integer) : relative to the top of the entire action (top line == 1)
navigation (Expression) : == 0 unless sorting nav list
object (Object) : the Object these are attributes of
type (AnalysisElementType) : always is: AttributeSort

BaseType: supertype: DataType; subtypes: none; A built-in, predefined type
basicType (Integer): 0 – pointer, 1 – Integer, 2 – Real, 3 – String, 4 – Character, 5 - DataContainer
langId (String) : name sanitized for use as a C-language identifier
name (String)
type (AnalysisElementType) : always is BaseType

BinaryExpression: supertype: Expression; subtypes: none; an expression that has two
operands and one operator
action (Action): the action this is in
dataType (DataType) : the type of this expression
operator (Integer) : please refer to the Operator Table at the end of this section
operand1 (Expression) : the left side operator
operand2 (Expression) : the right side operator
type (AnalysisElementType) : always is: BinaryExpression

BinaryRel: supertype: Relationship; subtypes:none

accessors (RelationshipAccessorList) : all PAL expressions that invoke accessors of this
relationship

associativeObject (Object) : == 0 for non-associative relationships
description (String)
name (String) : includes "R<number>:<meaning>"
number (Integer)
participant1 (Participant) : one end of the relationship
participant2 (Participant) : the other end of the relationship
type (AnalysisElementType) : always is BinaryRel

Break: supertype: Statement; subtypes: none; interrupts execution of this loop iteration, and
finishes the loop
block (ActionBlock) : the ActionBlock this is contained in
lineNumber (Integer) : relative to the top of the entire action (top line == 1)
type (AnalysisElementType) : always is Foo

Bridge: supertype: AnalysisElement; subtypes: none; A requirement flow line connecting two

Domains on the domain chart.
clientDomain (Domain): The domain imposing requirements through the bridge
description (String)
serverDomain (Domain): The domain satisfying requirements through the bridge

Transformation Engine User’s Guide

31

Cancel: supertype: EventAccessor; subtypes: none; an invocation of an event cancel accessor
action (Action): the action this is in
dataType (DataType) : == 0
destination (Expression) : a reference to the destination object instance (== 0 for create events)
event (Event) : the event this accesses
type (AnalysisElementType) : always is Cancel

Constant: supertype: Expression; subtypes: none; an expression that has a fixed value

action (Action): the action this is in
dataType (DataType) :
type (AnalysisElementType) : always is: Constant
value (String)

Continue: supertype: Statement; subtypes: none; interrupts execution of this loop iteration, and
starts on the next iteration
block (ActionBlock) : the ActionBlock this is contained in
lineNumber (Integer) : relative to the top of the entire action (top line == 1)
type (AnalysisElementType) : always is Continue

Create: supertype: ObjectAccessor; subtypes: none; an invocation of an object create accessor
action (Action): the action this is in
dataType (DataType) : a reference to this object
initialState (State) : required when creating an active object
object (Object) : the object is accesses
parameters (NameValuePairList)
type (AnalysisElementType) : always is Create

CreateServiceHandle: supertype: Statement; subtypes: none; an invocation of this built-in
service
block (ActionBlock) : the ActionBlock this is contained in
lineNumber (Integer) : relative to the top of the entire action (top line == 1)
lvalue (Expression) : the assignee
parameters (NameValuePairList)
service (Service) : service to be invoked later
type (AnalysisElementType) : always is: CreateServiceHandle

DataType: supertype: AnalysisElement; subtypes: BaseType, GroupType, GroupIterType,

InstanceReferenceType, ServiceHandle, UserDefinedType; The data type for an atomic data item
langId (String) : name sanitized for use as a C-language identifier
name (String)
type (AnalysisElementType) : can only be one of: BaseType, GroupType, GroupIterType,

InstanceReferenceType, ServiceHandle, UserDefinedType

DataTypeScope: supertype: AnalysisElement; subtypes: System, Domain,
initializationHook (Action) : The init action for this scope.
type (AnalysisElementType) : can only be one of: System, Domain
userDefinedTypes (UserDefinedTypeList): user defined types defined for this scope

Delete: supertype: ObjectAccessor; subtypes: none; an invocation of an object delete accessor
action (Action): the action this is in
dataType (DataType) : == 0
instance (Expression) : the instance being deleted
object (Object) : the object it accesses
type (AnalysisElementType) : always is Delete

Transformation Engine User’s Guide

32

Diagram: supertype: none; subtypes: none
diagramType(String): The type of the diagram. One of “Class Diagram”,
“Sequence Diagram”, “Use Case", or "Collaboration Diagram"

filename(String): the fully qualified filename for use with the DIAGRAM directive
name(String): The name of the diagram in the host editor.
scope(AnalysisElement): The object, domain, or subsystem to which this domain pertains.

Domain: supertype: DataTypeScope; subtypes: none
analyzed (Boolean): indicates if the domain is realized, or if it has analysis
clients (BridgeList) : list of bridges from this domain's clients
description (String)
diagrams(DiagramList) : List of all the diagrams for this domain. Includes IM and support diagrams.
im (String): the fully qualified filename for diagram graphics for the domain's information model - for

use with the DIAGRAM directive
langId (String) : name sanitized for use as a C-language identifier
name (String)
objects (ObjectList)
prefix (String)
relationships (RelationshipList)
servers (BridgeList) : list of bridges from this domain's servers
services (DomainServiceList)
subsystems(SubsystemList): list of subsystems partitioning this domain. List contains only

immediate subsystems.
supportDiags (StringList): a list of fully qualified filenames for diagram graphics for all diagrams with

names starting with "<system.name>>." - for use with the DIAGRAM directive
system (System) : The enclosing System.
type (AnalysisElementType) : always is Domain
userDefinedTypes (UserDefinedTypeList): user defined types defined for this scope

DomainService: supertype: Service; subtypes: none

action (Action) : The procedure to be performed upon invocation
dataType (DataType): the return value data type; == 0 for services with no return value
description (String): The analyst-entered service description.
domain (Domain)
invokers (ServiceInvocationList) : all PAL expressions that invoke this service
langId (String) : name sanitized for use as a C-language identifier
name (String)
parameters (ParameterList)
subsystem(Subsystem)
type (AnalysisElementType) : always is: DomainService

Event: supertype: AnalysisElement; subtypes: none

accessors (EventAccessorList) : all PAL expressions that invoke accessors of this event
description (String)
destination (Object) : the Object with the matching prefix
isCreate (Boolean) : indicates if this causes a transition into a create state
langId (String) : name sanitized for use as a C-language identifier
name (String) : excludes destination prefix and colon
parameters (ParameterList)

EventAccessor: supertype: Expression; subtypes: Cancel, Generate, ReadTime; an invocation

of an event accessor
action (Action): the action this is in
dataType (DataType) : the data type of this accessor's value (== 0 for accessor invocation with no

return value)
destination (Expression) : a reference to the destination object instance (== 0 for create events)
event (Event) : the event this accesses
type (AnalysisElementType) : can only be one of: Cancel, Generate, ReadTime

Transformation Engine User’s Guide

33

Expression: supertype: AnalysisElement; subtypes: AttributeSelection, BinaryExpression,

Constant, EventAccessor, LocalVariable, ObjectAccessor, ParameterVariable,
RelationshipAccessor, ServiceInvocation, UnaryExpression; an invocation of a function and/or
something that returns/has a value (as an rvalue), or something that can have it's value set (as an
lvalue)
action (Action): the action this is in
dataType (DataType) : the data type of this expression's value (== 0 for function invocation with no

return value)
type (AnalysisElementType) : indicates which subtype it is

Find: supertype: ObjectAccessor; subtypes: none; an invocation of an object find accessor
action (Action): the action this is in
dataType (DataType) : == 0
findType (Integer) : FIRST, LAST
navigation (Expression): optional relationship navigation clause to start Find from
object (Object) : the object this Find accesses
type (AnalysisElementType) : always is Find
whereClause (Expression) : selection criteria; may == 0

ForEach: supertype: Statement; subtypes: none; an iterative traversal of a set of object
instances
block (ActionBlock) : the ActionBlock this is contained in
index (Expression) : the local variable or parameter used as the cursor
lineNumber (Integer) : relative to the top of the entire action (top line == 1)
loopBlock (StatementBlock) : the loop body
navigation (Expression): optional relationship navigation clause to start Find from
object (Object) : the object this Find accesses
type (AnalysisElementType) : always is ForEach
whereClause (Expression) : selection criteria; may == 0

Generate: supertype: EventAccessor; subtypes: none; an invocation of an event generate
accessor
action (Action): the action this is in

arguments (ActualParameterList)
dataType (DataType) : == 0
delay (Expression) : the amount of time to wait before queueing the event (== 0 for immediate

events (non-delayed); units are design-specific)
destination (Expression) : a reference to the destination object instance (== 0 for create events)
event (Event) : the event this accesses
type (AnalysisElementType) : always is Generate

GroupIterType: supertype: DataType; subtypes: none; Defines an iterator for a set container
base (DataType): The type this maps to
langId (String) : name sanitized for use as a C-language identifier
name (String)
type (AnalysisElementType) : always is GroupIterType

GroupSort: supertype: Statement; subtypes: none; reorders a group of atomic data values
ascending (Boolean) : indicates the sort direction
block (ActionBlock) : the ActionBlock this is contained in
lineNumber (Integer) : relative to the top of the entire action (top line == 1)
subject (Expression) : the group this will reorder
type (AnalysisElementType) : always is: GroupSort

GroupType: supertype: DataType; subtypes: none; Defines a set container
base (DataType): The type this maps to
langId (String) : name sanitized for use as a C-language identifier
name (String)
type (AnalysisElementType) : always is GroupType

Transformation Engine User’s Guide

34

If: supertype: Statement; subtypes: none; a sequential conditional logic construct
block (ActionBlock) : the ActionBlock this is contained in
condition (Expression) : the controlling condition
elseBlock (ActionBlock) : the block of statements to execute if the condition is FALSE
ifBlock (ActionBlock) : the block of statements to execute if the condition is TRUE
lineNumber (Integer) : relative to the top of the entire action (top line == 1)
type (AnalysisElementType) : always is If

InstanceReferenceType: supertype: DataType; subtypes: none; a handle to an object instance
object (Object): the object this refers to
langId (String) : name sanitized for use as a C-language identifier
name (String)
type (AnalysisElementType) : always is InstanceReferenceType

Invocation: supertype: Statement; subtypes: none; a statement that invokes a accessor, service
or method
block (ActionBlock) : the ActionBlock this is contained in
invokee (Expression) : the accessor, service or method this calls
lineNumber (Integer) : relative to the top of the entire action (top line == 1)
type (AnalysisElementType) : always is Invocation

Link: supertype: RelationshipAccessor; subtypes: none; an invocation of a relationship link
accessor
action (Action): the action this is in
assocInstance (Expression) : a reference to the instance of the associated object (== 0 if no

associative object)
dataType (DataType) : a single or Group of references to the destination instance
instance1 (Expression) : reference to the instance corresponding to the participant1 end of the

relationship
instance2 (Expression) : reference to the instance corresponding to the participant2 end of the

relationship
relationship (BinaryRel)
type (AnalysisElementType) : always is Link

LocalVariable: supertype: Expression; subtypes: none; a variable constrained in scope to the
containing action
action (Action): the action this is in
declaration (VariableDefinition): the Statement that declares this variable
type (AnalysisElementType) : always is: LocalVariable

MethodInvocation: supertype: Expression; subtypes: none; the invocation of a built-in method

(not a domain or bridge service)
action (Action): the action this is in
dataType (DataType) : method return value data type (== 0 if no return value)
langId (String) : name sanitized for use as a C-language identifier
name (String) : name of the method to be invoked

arguments (ActualParameterList)
subject (Expression) : identifies the class instance this is a method of (== 0 for static methods)
type (AnalysisElementType) : always is: MethodInvocatrion

NameValuePair: supertype: AnalysisElement; subtypes: none; an actual parameter that uses
name-association
paramName (String) : the formal parameter name for this argument
value (Expression) : the actual parameter value

Transformation Engine User’s Guide

35

Navigation: supertype: RelationshipAccessor; subtypes: none; an invocation of a relationship
navigation accessor
action (Action): the action this is in
dataType (DataType) : a single or Group of references to the destination instance

relationship (BinaryRel)
destParticipant (Participant) : the destination end of the relationship (indicates the direction of

travel)
sourceInstance1 (Expression) : the starting point of the navigation
sourceInstance2 (Expression) : the OTHER starting point of the navigation (only used for

navigation to the associtive class instance in a m:m)
toAssociatve (Boolean) : indicates the final destination is to the instance of the relationship's

associative object
type (AnalysisElementType) : always is Navigation

NewStateTransition: supertype:Transition; subtypes: none; a transition from one state to
another in response to the reception of an event.
action(Action): the transition action to be performed if this action is taken
destination(State): the state this state machine transitions to when this event is received, if guard

evaluates to TRUE
guard(Action): the guard action to be performed to see if this transition is to be taken
initiatingEvent(Event): the event causing this transition
source(State): the state this state machine is in when the event is received
type (AnalysisElementType) : always is NewStateTransition

NonStateTransition: supertype:AnalysisElement; subtypes:none; a transition logic response for

a state in response to the reception of an event that does not result in a transition to a new state
(isDeffered and isIgnored cannot be TRUE at the same time).
initiatingEvent(Event): the event causing this transition
isDeferred(Boolean): TRUE indicates this event is to be requeued for later re-dispatch
isIgnored(Boolean): TRUE indicates this event is to be discarded
source(State): the state this state machine is in when the event is received
type (AnalysisElementType) : always is NonStateTransition

Object: supertype: AnalysisElement; subtypes: none
accessors (ObjectAccessorList) : all PAL expressions that invoke accessors of this object
allAttributes (AttributeList) : all attributes defined for this object and all of it's supertypes and their

parents
associatedRelationship (BinaryRel) : == 0 for non-associative objects
attributes (AttributeList) : the attributes defined for this object (excluding supertypes)
defaultInitialState(State)
description (String)
diagrams(DiagramList): the list of diagrams for this object including the STD
domain (Domain)
events (EventList) : the events with this object's prefix
langId (String) : name sanitized for use as a C-language identifier
name (String)
participants (ParticipantList): the ends of relationships that this object is in
prefix (String)
receivedEvents (EventList) : the events that cause transitions on this object's STD
services (ObjectServiceList)
sortStatements (AttributeSortList)
states (StateList)
std (String): the fully qualified filename for diagram graphics for the object's state transition

diagram - for use with the DIAGRAM directive

subsystem(Subsystem)
subTypes (ObjectList) : my immediate children (not their children)
superTypes (ObjectList) : my immediate parents (not their parents)
superTypeInRels(SubSuperRelList) : list of relationships where this object is supertype

Transformation Engine User’s Guide

36

ObjectAccessor: supertype: Expression; subtypes: Create, Delete, Find; an invocation of an
object accessor
action (Action): the action this is in
dataType (DataType) : the data type of this accessor's value (== 0 for accessor invocation with no

return value)
object (Object) : the object is accesses
type (AnalysisElementType) : can only be one of: Create, Delete, Find

ObjectService: supertype: Service; subtypes: none
action (Action) : The procedure to be performed upon invocation
dataType (DataType): the return value data type; == 0 for services with no return value
description (String): The analyst-entered service description.
instanceBased (Boolean)
invokers (ServiceInvocationList) : all PAL expressions that invoke this service
langId (String) : name sanitized for use as a C-language identifier
name (String)
object (Object)
parameters (ParameterList)
polymorphism(PolymorphismType) : NOT_POLYMORPHIC indicates the service is not

polymorphic, POLYMORPHIC_INTERFACE indicates that this service defines the
interface to this service for subtype implementations,
POLYMORPHIC_IMPLEMENTATION indicates that this service defines the
implementations to this service for this subtype

type (AnalysisElementType) : always is ObjectService

Parameter: supertype: none; subtypes: none; a Service argument or an Event data item

dataType (DataType)
defaultValue (String)
description (String)
langId (String) : name sanitized for use as a C-language identifier
mode (Integer) : 0 - input only; 1 - output only; 2 - input/output
name (String)

ParameterVariable: supertype: Expression; subtypes: none; the use of a parameter of the
containing action
action (Action): the action this is in
dataType (DataType)
parameter (Parameter) : matches the Parameter's dataType
type (AnalysisElementType) : always is: ParameterVariable

Participant: supertype: AnalysisElement; subtypes: none; The participant is one end of a

BinaryRel.
conditional (Boolean)
multiple (Boolean)
name (String) : the role phrase for this end of the relationship
object (Object)
relationship (BinaryRel)
relative (Participant) : the other end of the BinaryRel.

Property: supertype: none; subtypes: none; Name value pair assigned to an analysis element.

keyword(String): name of the property
value(String): value assigned to the property

ReadTime: supertype: EventAccessor; subtypes: none; an invocation of an event read time

accessor
action (Action): the action this is in
dataType (DataType) : assignment-compatible with Real
destination (Expression) : a reference to the destination object instance (== 0 for create events)
event (Event) : the event this accesses
type (AnalysisElementType) : always is ReadTime

Transformation Engine User’s Guide

37

Relationship: supertype: AnalysisElement; subtypes: BinaryRel, SubSuperRel

description (String)
number (Integer)
type (AnalysisElementType) : can only be one of: BinaryRel, SubSuperRel

RelationshipAccessor: supertype: Expression; subtypes: Navigation, Link, Unlink; an
invocation of a relationship accessor
action (Action): the action this is in
dataType (DataType) : the data type of this accessor's value (== 0 for accessor invocation with no

return value)
relationship (BinaryRel)
type (AnalysisElementType) : can only be one of: Navigation, Link, Unlink

Return: supertype: Statement; subtypes: none
block (ActionBlock) : the ActionBlock this is contained in
lineNumber (Integer) : relative to the top of the entire action (top line == 1)
returnValue (Expression): the value being returned by this statement
type (AnalysisElementType) : is always Return

Service: supertype: AnalysisElement; subtypes: DomainService, ObjectService
action (Action) : The procedure to be performed upon invocation
dataType (DataType): the return value data type; == 0 for services with no return value
description (String): The analyst-entered service description.
invokers (ServiceInvocationList) : all PAL expressions that invoke this service
langId (String) : name sanitized for use as a C-language identifier

name (String)
parameters (ParameterList)
type (AnalysisElementType) : can only be one of: DomainService, ObjectService

ServiceHandle: supertype: DataType; subtypes: none; defines a handle to a service and its
parameters that can be specified at runtime.
langId (String) : name sanitized for use as a C-language identifier
name (String)
type (AnalysisElementType) : always is ServiceHandle

ServiceHandleInvocation: supertype: Statement; subtypes: none; a statement that invokes a
ServiceHandle
block (ActionBlock) : the ActionBlock this is contained in
lineNumber (Integer) : relative to the top of the entire action (top line == 1)
parameters (NameValuePairList)
serviceHandle (Expression) : the ServiceHandle being called
type (AnalysisElementType) : always is InvokeServiceHandle

ServiceInvocation: supertype: Expression; subtypes: none; the invocation of an object or
domain service
action (Action): the action this is in

arguments (ActualParameterList)
dataType (DataType)
service (Service)
subject (Expression) : identifies the object instance this is a method of (== 0 for non-instance-based

methods)
type (AnalysisElementType) : always is: ServiceInvocation

Transformation Engine User’s Guide

38

State: supertype:AnalysisElement; subtypes: none
actionSummary (String) : high-level English summary of action from STD
defaultInitialState(State) : The nested state that is the default initial substate (only valid for a

superstate)
description(String) : the state's description
entryAction(Action) : the action to be executed upon entry to this state
exitAction(Action) : the action to be executed upon exit from this state
incomingTransitions(NewStateTransitionList): the set of transitions into this state
initiatingEvents (EventList) : the list of different events that can cause a transition into this state
kind(StateKind): indicates the type of state or psuedostate
langId (String) : name sanitized for use as a C-language identifier
name (String): the name of this state
nestedStates(StateList): the list of state enclosed by this superstate
nextStates (StringList) : the STT row for this state; there is an enter for each of the receivedEvents

for this state's Object (retained for backward compatibility).
object (Object): the object whose lifecycle contains this state
outgoingTransitions(TransitionList): the set of transition logic responses for all events into this state
parent(State): this state's superstate (may be NULL)
type (AnalysisElementType) : always is State

Statement: supertype: AnalysisElement; subtypes: Assignment, AttributeSort, Break, Continue,

CreateServiceHandle, ForEach, GroupSort, If, Invocation, InvokeServiceHandle, Return,
WhileLoop; a single line of PAL

block (ActionBlock) : the ActionBlock this is contained in
lineNumber (Integer) : relative to the top of the entire action (top line == 1)
type (AnalysisElementType) : indicates which subtype it is

StatementBlock: supertype: AnalysisElement; subtypes: none; a block of PAL statements within
a process model
action (Action) : the Action that contains this block
statements (StatementList) : the contained in this ActionBlock

Stereotype: supertype: AnalysisElement; subtypes: none; an extension of the semantics of an

analysis element
name(String) : the name of the stereotype
extendedElements(AnalysisElementList): the analysis elements that use this extension

SubSuperNavigation: supertype: Expression; subtypes: none; a "cast" from a supertype to one
of its subtypes
action (Action): the action this is in
dataType (DataType) : the type of this expression
destination (Object) : the subtype
sourceInstance (Expression) : the instance of the supertype
subSuperRel(SubSuperRel): the subtype supertype relationship navigated
type (AnalysisElementType) : always is: SubSuperNavigation

SubSuperRel: supertype: Relationship; subtypes:none

description (String)
number (Integer)
isRealization(Boolean) : TRUE for realization relationships, FALSE for all other inheritance

relationships
subTypes (ObjectList)
superType (Object)
subTypeNavigations (SubSuperNavigationList) : navigations down this subtype supertype

relationship
type (AnalysisElementType) : always is SubSuperRel

Transformation Engine User’s Guide

39

Subsystem: supertype: AnalysisElement; subtypes: none

description(String)
diagrams(DiagramList): list of diagrams for this subsystem. Includes IM and support diagrams.
domain(Domain): The parent domain if there is no parent subsystem.
im (String): the fully qualified filename for diagram graphics for the domain's information model - for

use with the DIAGRAM directive
langId (String) : name sanitized for use as a C-language identifier
name (String)
objects (ObjectList)
parent(Subsystem): subsystem containing this subsystem
services(DomainServiceList)
subsystems(SubsystemList): any nested subsystems
supportDiags(StringList): a list of fully qualified filenames for diagram graphics for all diagrams with

names starting with "<subsystem.name>>." - for use with the DIAGRAM directive

System: supertype: DataTypeScope; subtypes: none

description (String)
diagrams(DiagramList): a list of diagrams for the system. Includes domain chart and support

diagrams.
domainChart (String): the fully qualified filename for diagram graphics for the domain chart - for use

with the DIAGRAM directive

domains (DomainList)
initializationHook (Action) : The init action for this scope.
langId (String) : name sanitized for use as a C-language identifier
name (String)
supportDiags (StringList): a list of fully qualified filenames for diagram graphics for all diagrams with

names starting with "<system.name>>." - for use with the DIAGRAM directive
type (AnalysisElementType) : always is System
userDefinedTypes (UserDefinedTypeList): user defined types defined for this scope

Transition: supertype:AnalysisElement; subtypes: NewStateTransition, NonStateTransition; a
transition logic response for a state in response to the reception of an event.
initiatingEvent(Event): the event causing this transition
source(State): the state this state machine is in when the event is received
type (AnalysisElementType) : indicates which subtype it is

UnaryExpression: supertype: Expression; subtypes: none; an expression that has one operand

and one operator
action (Action): the action this is in
dataType (DataType) : the type of this expression
operator (Integer)
operand1 (Expression)
type (AnalysisElementType) : always is: UnaryExpression

Unlink: supertype: RelationshipAccessor; subtypes: none; an invocation of a relationship unlink
accessor
action (Action): the action this is in
dataType (DataType) : a single or Group of references to the destination instance
instance1 (Expression) : reference to the instance corresponding to the participant1 end of the

relationship
instance2 (Expression) : reference to the instance corresponding to the participant2 end of the

relationship
relationship (BinaryRel)
type (AnalysisElementType) : always is Unlink

Transformation Engine User’s Guide

40

UserDefinedType: supertype: DataType; subtypes: UserEnumerate, UserNonEnumerate; A data
type defined by the user
base (DataType): The type this maps to
langId (String) : name sanitized for use as a C-language identifier

name (String)
scope (DataTypeScope): the analysis scope where this is defined
type (AnalysisElementType) : is either UserEnumerate or UserNonEnumerate

UserEnumerate: supertype: UserDefinedType; subtypes: none; An enumerate defined by the
user
base (DataType): The type this maps to (Integer)
langId (String) : name sanitized for use as a C-language identifier
name (String)
scope (DataTypeScope): the analysis scope where this is defined
type (AnalysisElementType) : always UserNonEnumerate
valueList (StringList): the list of enumerate values for this type

UserNonEnumerate: supertype: UserDefinedType; subtypes: none; A non-enumerate data type
defined by the user
base (DataType): The type this maps to
isExtern (Boolean) : TRUE indicates this is an EXTERN type (defined outside of analysis).
langId (String) : name sanitized for use as a C-language identifier
name (String)
scope (DataTypeScope): the analysis scope where this is defined
type (AnalysisElementType) : always UserNonEnumerate
VariableDefinition: supertype: Statement; subtypes: none; the declaration of a local variable
block (ActionBlock) : the ActionBlock this is contained in
dataType (DataType) : variable type
initialValue (Expression) : an optional initial value for the variable
isConst (Boolean) : TRUE indicates this a constant.
isExtern (Boolean) : TRUE indicates this is externally declared/initialized
lineNumber (Integer) : relative to the top of the entire action (top line == 1)
name (String) : variable name
type (AnalysisElementType) : always is VariableDefinition

WhileLoop: supertype: Statement; subtypes: none; an iterative conditional logic construct
block (ActionBlock) : the ActionBlock this is contained in
condition (Expression) : the controlling condition
lineNumber (Integer) : relative to the top of the entire action (top line == 1)
loopBlock (ActionBlock) : the block of statements to repeatedly execute while the condition is TRUE
type (AnalysisElementType) : always is WhileLoop

Transformation Engine User’s Guide

41

B. Operators and Constants

Operators:

number operator description
OP_ADD + binary add
OP_BIT_AND & bitwise AND
OP_BIT_OR | bitwise OR
OP_BIT_XOR ^ bitwise XOR
OP_COMPLEMENT ~ complement
OP_DIVIDE / divide
OP_EQ == equal
OP_GREATER > greater than
OP_GREATER_EQ >= greater than or equal
OP_INDEX [] subscript
OP_LESS < less than
OP_LESS_EQ <= less than or equal
OP_LOG_AND && logical AND
OP_LOG_OR || logical OR

OP_LSH << shift left
OP_MODULO % modulo
OP_MULTIPLY * multiply
OP_NEQ != not equal
OP_RSH >> shift right
OP_SUBTRACT - binary subtract
OP_UMINUS - negate
OP_UNOT ! not
OP_UPLUS + unary positiive

Parameter Modes:

MODE_INPUT
MODE_OUTPUT
MODE_INPUT_OUTPUT

Built-in Types:

BASIC_TYPE_BOOLEAN
BASIC_TYPE_CHARACTER
BASIC_TYPE_INTEGER
BASIC_TYPE_REAL
BASIC_TYPE_STRING
BASIC_TYPE_HANDLE
BASIC_TYPE_GENERIC_VALUE
BASIC_TYPE_VOID

Find Types:

FIND_FIRST
FIND_LAST

State Kinds:

INITIAL_STATE
FINAL_STATE
SHALLOW_HISTORY_STATE
DEEP_HISTORY_STATE
REGULAR_STATE

Transformation Engine User’s Guide

42

C. Capacities and Limitations

DATA ITEM LIMITATIONS

Engine imposes the following limits on string lengths:

• coloring property value: 4096

• event name: 100

• literal value: 100

All other limits in the number or length of items are only those imposed by

your UML editing environment.

