

©2004 by Pathfinder Solutions

Template Based Transformation

Complete Control Over Generated Code

Version 2.0

May 24, 2004

PathMATE™ Series

Pathfinder Solutions LLC

33 Commercial Street, Suite 2

 Foxboro, MA 02035 USA

www.PathfinderMDA.com

888-543-7222

 ii

Table Of Contents

PathMATE Overview ...iii

1. Introduction.. 1

2. Development Process Overview .. 2

Analysis ...2

Design and Translation ..3

3. Implementation Code Templates... 5

Example 1: Class Header ...6

Example 2: Class Data Members ...7

Example 3: State Action Function Declaration ...8

Example 4: Event Generate Action Language...9

4. Summary... 10

5. References .. 11

 iii

PathMATE Overview

This overview introduces Model Driven Architecture (MDA) and the

PathMATE™ tools that make MDA work. MDA and PathMATE move you

from writing and debugging code to developing and testing the logic of

a high performance system. Over years of rigorous refinement in

several industries, PathMATE tools have proven their value in rapid

and effective software systems development.

PathMATE Toolset

The PathMATE Model Automation and Transformation Environment

includes all the tools required to transform your MDA models into high-

performance systems (Figure 1).

Figure 1. PathMATE Toolset

 iv

The three parts of the PathMATE toolset cooperate to turn your models

into executable systems:

• Transformation Maps – Generate C, C++, or Java software with

off-the-shelf Transformation Maps, or create custom maps to drive

output for other languages or specific platforms.

• Transformation Engine – The Engine transforms platform-

independent models into working, embedded software

applications.

• Spotlight – Verify and debug your application logic with Spotlight,

the most advanced model testing environment available.

No other MDA transformation environment offers a more open or

configurable set of development tools, designed to meet the

requirements of systems engineers.

How PathMATE Works

Use Model Driven Architecture to build complex embedded systems

that meet rigorous standards for speed and reliability. MDA works

because it separates what the system does from its deployment on a

particular platform. PathMATE adds these advantages:

• Greatest architectural control – A highly configurable

Transformation Engine enables you to optimize output for

resource-constrained platforms.

• Clean separation of model and code – Conforming to the MDA

paradigm, PathMATE models contain no implementation code.

That gives you fast and flexible deployment and migration

capabilities.

• Configurable, target-based model execution and testing –

Preemptively eliminate platform-specific bugs, minimize quality

assurance resources, and accelerate development.

• Lowest cost of ownership – Integrate PathMATE with your existing

UML editor. Build on your previous investment in training and

software.

• Speed – Even large transformations take just seconds with

PathMATE. That enables highly iterative model development, and

rapid transformation and test cycles.

Try the demonstration software available at www.PathfinderMDA.com

to get started quickly and easily.

Template Based Transformation

1

1. Introduction

Model-based software development using UML has been applied for all

types of software, from business applications to embedded systems.

As modeling approaches and their supporting tool technologies have

matured, the ability to execute models and generate production-grade

code have spread as well. However the generation of implementation

code for embedded systems has not always resulted in a system with

the high level of run-time performance required.

Embedded software development teams often work in challenging

execution environments, striving for high levels of system

performance. Template-based transformation of UML models to code

provides the control these teams need to ensure they will achieve

required levels of performance. The heart of this technology is a

transformation engine that reads UML analysis models and forms the

output based on a separate set of rules – in the form of code

templates. A single transformation engine can take a project’s models,

and generate different implementations with widely varying

characteristics – even different implementation languages – just by

using different template sets.

By choosing an appropriate off-the-shelf template set a project can

attain reasonable efficiency, but sometimes this is not enough. By

modifying implementation patterns in code templates, or creating new

patterns of their own, the team can utilize the implementation

architecture and project-specific optimizations they need to get the job

done. A template-based approach to code generation results in an

implementation with optimized performance, and still retains the

simplicity, maintainability and extensibility of a modeled system.

Template Based Transformation

2

2. Development Process Overview

The effective application of UML models to software engineering for

challenging applications – especially in the embedded context –

requires a development process that will ensure:

• models are unambiguous and complete

• the resulting system implementation can be optimized without

impacting the models

• the overall architecture of the system is maintained by the

process through multiple releases and requirements evolution

A transformational approach is used to maintain the separation of

models from implementation, which facilitates the achievement of

these goals. Specific aspects of this type of process are introduced

below.

Analysis

The process of modeling a solution to a problem in terms of the

problem itself is called Analysis. Effective Analysis models are rigorous

and complete, and largely free of implementation bias. The Unified

Modeling Language (UML) is currently the most popular notation for

software Analysis. The work products produced during Analysis are:

• Domain Model: This is a UML class diagram showing the highest

level decomposition of the system into areas of separate subject

matter, called Domains. Domains are shown as Packages, and

Dependency arrows show Bridges - the flow of requirements

between Domains. A Domain can be modeled, or it can be

developed via other means: hand-written code, legacy code,

generated from another source, imported from a library, etc. Key

system-level scenarios are captured with UML interaction

diagrams to show interactions between Domains.

• Class Model: For each Domain that is to be Analyzed, a UML class

diagram is used to define the Classes that form the structure of

the Domain. Classes have associations with other Classes, and

inherit from other Classes.

• Scenario Model: Key scenarios for this specific Domain are

captured with UML interaction diagrams to show interactions

between Domain services (operations), Class services (methods),

Class event messages, and services of outside Domains used in

this Domain.

• State Model: For each Class that receives events, a UML State

Diagram is used to capture the Class lifecycle, defining state-

dependent behavior for that Class.

• Actions: For each Domain service, Class service, and State action,

a detailed, unambiguous behavioral description is created. This is

expressed in an Action Language that conforms to the UML Action

Template Based Transformation

3

Semantics, an analysis-level “programming” language that

provides a complete set of Analysis-level execution primitives

without biasing the implementation. By expressing behavioral

detail in Action Language, considerable freedom is retained until

the transformation phase for how each analysis primitive is

implemented – critical for optimization.

Design and Translation

Design is the creation of a strategy and mechanisms supporting the

mapping of analysis constructs to a run-time environment –

implementation. Design is conducted in a different concept space from

analysis. The separation of Analysis from implementation supports the

development of the Design independently of the analysis activities,

retains the simplicity of the Analysis models, and allows the tuning and

optimization of the implementation without impacting the analysis.

Tranformation is the process where the UML models for each analyzed

domain are mapped to implementation through Design strategies –

code templates. Design is conducted at two levels:

• Structural Design: Identify the execution units – the threads,

tasks, and processes – of the system, and allocate them to

processors. Also allocate various subsets of the models to each of

the units. At this level, the overall implementation strategy is

defined.

• Mechanical Design: Develop detailed patterns (expressed in code

templates) to map analysis to the required implementation, and

build base mechanisms to support this implementation. At this

level, specific constructs are developed to support the overall

strategy defined during Structural Design.

The greatest benefits to be gained from transformation – flexibility and

simplicity – are derived from the fundamental separation of Analysis

from Design. The Analysis is free of any specific implementation

complications, and the Design is focused on how to achieve the

execution capabilities required – especially performance – in a specific

execution environment.

This paper outlines a template-based approach for Mechanical Design

where a transformation engine takes the semantic information in the

analysis models and produces a set of executable source code through

the application of templates. This generated code is a complete

implementation for its Analyzed domain - it requires no further

creative input beyond the models and implementation code templates.

The generated code for the Analyzed domain is combined with other

domains that may not be modeled: code generated from other

sources, such as GUI IDEs, hand-written code, off-the-shelf libraries,

or third-party developed elements.

By untangling the normal interweaving of the different concerns of

problem space subject matter, implementation architecture, and

execution platform, a transformational approach allows a simpler and

Template Based Transformation

4

more effective treatment of each separate concern. This type of

approach affords the development team flexibility at a strategic level:

• Freedom to decide which components (domains) are modeled,

and which are not

• Complete control over generation of implementation code from

modeled components

• Flexibility to change implementation strategy separate from

models at any time

• Complete Design layer reuse by applying the same transformation

to different applications

• Complete application reuse by translating unchanged analysis

models to new execution environment (platforms, languages,

technologies, etc.)

Design

BuildTranslation

Analysis

Execution-Specific RequirementsApplication-Specific Requiremts

non-Analyzed elements

Design Pattern

Templates

Deliverable System

Analysis models

Base Mechanisms implementation

libraries

application-specific and

capacity requirements

implementation

of models

Figure 2. Analysis, Design, and Translation Processes

Template Based Transformation

5

3. Implementation Code Templates

A template is a Design pattern captured in a form understandable to a

transformation program. A complete set of code templates is provided

to a transformation program which reads the semantic information

from UML Analysis models, and then produces a set of target

documents – code.

Translation

Design Pattern Templates

Analysis models

implementation
of models

Figure 3. Translation Process

To be effective for code generation, a template notation must support

two key capabilities:

• The presentation of model information through substitution fields

• Facilitate the navigation and processing of UML model elements so

implementation strategy decisions can be made based on an

investigation of actual model information.

When the term “template” is used, generally the first capability is

assumed. However for proper generation of efficient implementation

code, the capability to easily gather diverse elements of model

information and derive semantic conclusions is critical.

Template Based Transformation

6

Example 1: Class Header

This example shows some of the basic elements of applying Design

patterns through templates. A subset of the two transformation inputs

are shown: a UML Analysis Class, and the pattern that maps it to an

implementation C++ class. The result is a C++ class header. Please

note how the Analysis elements - domain prefix, class name, class

description – are mapped into code. (Please note that in this template

fragment, a variable “object” is used to refer to UML Class

information.)

Analysis: UML Class

Description: A bowl, disk, pan, baking sheet, or other mixing or

cooking vessel.

Template: UML Class definition -> C++ class header (segment)

//==
class [domain.prefix]_[object.name] : public \
 [FOREACH parent IN object.superTypes SEPARATOR ", public "] \
 [object.domain.prefix][parent.prefix][ENDFOREACH]
{
 /* [object.description] */

public:
 // This is the list of all instances of objects of this type
 static PfdBaseList instanceList;
 . . .

Generated Code: Container C++ class header (segment)

//==
class FP_CONT : public FP_PA
{
 /* A bowl, disk, pan, baking sheet, or other mixing or cooking vessel.
*/

public:
 // This is the list of all instances of
 //objects of this type
 static PfdBaseList instanceList;
. . .

In the example above, a simple substitution (lexical replacement) is

done in the template to build a C++ class definition for the example

UML Class.

Container (CONT)

number
inTransit

Template Based Transformation

7

Example 2: Class Data Members

This example shows the generation of member declarations for

attributes of a UML class.

Analysis: UML Class

Template: UML Class Attributes -> C++ class data members

(segment)

. . .
public:
 // Attributes:
[FOREACH attribute in object.attributes]
 /* [attribute.description] */
 [attributedataType] [attribute.name];

[ENDFOREACH /*attribute */]
 . . .

Generated Code: Container C++ class header (segment)

public:
 // Attributes:
 /* External identification number. */
 Integer number;
 /* Flag indictaing if the container is moving towards
 its location, or if it has reached it. */
 Boolean inTransit;

In the example above, an iteration is required over the attribute

information – this shows a simple form of model information

navigation. In combination with the template segment from example 1

(and other segments), this template segment builds a part of the class

definition. There are other templates which emit no code at all, and

just provide the executive control over the complete template set,

building the generated code base from the required pieces in the

appropriate order.

The bulk of the complexity in a product-grade template set for high

performance code actually is dedicated to the selection of the proper

implementation coding pattern to be applied in a given modeling

situation. As the translator works through the models to generate

code, the analysis modeling context is considered in conjunction with

specific transformation hints or “coloring” - provided as project-specific

properties on modeled elements – and a determination is made as to

which specific pattern is to be applied. The bulk of project-specific

Container (CONT)

number
inTransit

Template Based Transformation

8

template customizations involve supplementing the available pattern

set with a new pattern template, and then augmenting the selection

logic to know when to apply the new pattern. All of this selection logic

is expressed in “template” notation, as well as the patterns

themselves. Design Pattern Templates offers a more detailed look into

this aspect of template-based transformation (see References below).

Example 3: State Action Function Declaration

This example shows the generation of a declaration of a state entry

action for a UML state model.

Analysis: UML State Model (Fragment)

Template: UML Class Attributes -> C++ class data members

(segment)

// Now the state action functions.
[FOREACH state in object.states]
 [EXPAND act_pro (class_name, state)];
[ENDFOREACH /* state */]

Generated Code: Container C++ class header (segment)

// Now the state action functions.
 void FPCONT::doMoving (PfdEvent *event);
 void FPCONT::doIdle (PfdEvent *event);
 void FPCONT::doPutting_Away (PfdEvent *event);

In the example above, the template act_pro is invoked to emit the

action function profile.

CONT:Move(utensilType)

CONT:PutAway

Idle

PuttingAway

inTransit = TRUE

call CNV:Move to move this

container to the cache

Moving

inTransit = TRUE

location = Find PreparationAsset with type == utensilType

call CNV:Move(location) to move container to desired

location

Template Based Transformation

9

Example 4: Generate Event Action Language

This example shows the generation of an event to a UML state model.

Analysis: Action Language Generate Statement

GENERATE AR:SetupComplete() TO (new_recipe);

This statement, from the FoodPrep (FP) domain, specifies that the

ActiveRecipe (FP_AR) class’s SetupComplete event is sent to the

instance specified by the new_recipe reference. In implementation, an

event is implemented as a class defined within the receiving class’s

definition. The action language statement above is translated to a call

to the FP_AR::SetupComplete::generate() method. This example

shows the generate() method itself.

Template: UML Event Generate Method

void [event_class_name]::generate([class_name] *dest\
[FOREACH evdi IN event.parameters]
, [EXPAND gen_type (evdi.dataType)] [evdi.langId]\
[ENDFOREACH /* params */]
)
{
 // Create a new instance of the event
 [event_class_name] *ev = new [event_class_name] (dest);
 [ENDIF /* create */]
 // Now fill in the parameters
 [FOREACH evdi IN event.parameters]
 ev->[evdi.langId] = [evdi.langId];
 [ENDFOREACH /* params */]

 // Send the event
 ev->send();
}

Generated Code: Event Generate Function Implementation

void FP_AR::SetupComplete::generate(FP_AR *dest)
{
 // Create a new instance of the event
 FP_AR::SetupComplete *ev = new FP_AR::SetupComplete (dest);
 // Now fill in the parameters

 // Send the event
 ev->send();
}

The static method generate()creates an instance of the

SetupComplete event and places it on the system’s event queue with

the send() method.

Template Based Transformation

10

4. Summary

The solution to the core application “problem” is expressed in UML

analysis models. Complete, executable analysis models provide an

excellent basis for developing a problem solution that is robust and

durable yet simple and flexible. These models are translated to

implementation code using template-based transformation. Off-the-

shelf template sets can produce efficient implementations, but with

templates the project team has complete control over the

implementation. This separation of the implementation concerns from

the problem-space concerns maintains the simplicity, maintainability

and flexibility of the models, and allows the freedom to pursue a high-

performance implementation.

This paper is intended as a brief overview of transformation of UML

analysis models to implementation code. For an in-depth investigation

of a complete, executable transformation example, contact Pathfinder

Solutions to receive the Robochef sample model and accompanying

C++ code templates and base mechanisms. For a paper discussing the

determination and application of project-specific optimizations in the

context of template-based transformation, including detailed

examples, please request “Design Pattern Templates: A Strategy for

Optimizing Embedded System Performance” from Pathfinder Solutions.

Template Based Transformation

11

5. References

For more information about PathMATE, please call Pathfinder Solutions

at 508-384-1392, e-mail us at info@pathfindermda.com, or visit us at

www.pathfindermda.com. You may wish to refer to the following

sources:

On PathMATE:

Model Based Software Engineering: Rigorous Software Development

with Domain Modeling, Pathfinder Solutions, 2004 (this paper is

available from www.pathfindermda.com)

Design Pattern Templates: A Strategy for Optimizing Embedded

System Performance, Pathfinder Solutions, 2004; (this paper is

available from www.pathfindermda.com)

On the UML:

The Unified Modeling Language User Guide, Grady Booch, James

Rumbaugh, Ivar Jacobson, Addison Wesley, 1999; ISBN 0-201-

57168-4

UML Distilled, Martin Fowler, Addison Wesley, 1997; ISBN 0-201-

32563-2

UML Summary Version 1.1, Object Management Group, Inc. 1997 (this

paper is available from www.omg.org)

UML is a trademark of Object Management Group, Inc in the U.S. and

other countries.

