
©2011 by Pathfinder Solutions

PathMATE Transformation Maps
for C++ & Build
Version 8.02.011

Release Notes

August 12, 2011

www.PathfinderMDA.com
888-662-7284

 ii

Table Of Contents
1. Introduction .. 1

Online Documentation ... 1

Demo .. 1

2. Installation ... 1

3. Technical Support ... 1

4. Compatibility ... 1

5. Impact to Existing Projects ... 2

Version 8.02.011... 2

Version 8.02.010... 2

6. New Features .. 3

Version 8.02.011... 3

Version 8.02.010... 4

Version 8.02.008... 6

Version 8.01.000... 8

7. Defects Repaired ... 12

Version 8.02.011... 12

Version 8.02.010... 12

Version 8.02.008... 12

Version 8.01.000... 13

8. Known Limitations .. 15

Version 8.02.011... 15

PathMATE Transformation Maps for C++ & Build 8.02.011

1

1. Introduction
Online Documentation

PathMATE help is available from the Eclipse Help system - see the
PathMATE topics under the Eclipse environment Help->Help Contents.
Additional Online product documentation and technical information
may be found in the doc subdirectory of the base PathMATE
installation (default c:\pathmate\doc). The documentation is stored in
Adobe Acrobat (PDF) format. An Acrobat reader can be downloaded
free of charge from www.adobe.com.

Demo
In addition to the product demo available from
www.pathfindermda.com, be sure to see the PathMATE Quick Start
Guide for RSM, and the PathMATE Quick Start Guide (for Rose users),
located in the product install doc directory – typically c:/pathmate/doc.

2. Installation
Remove the existing C++, Common, and Build templates to ensure a
clean base. Then install the PathMATE Transformation Map for C++
and Build in the same root directory as base PathMATE so the C++
and Build Templates transformation maps in the platform models
delivered with PathMATE can find their template files.

3. Technical Support
Pathfinder Solutions Technical Support
Telephone: 888-662-7284 x103
Email: support@pathfindermda.com

4. Compatibility
Requires PathMATE 8.01.001 or higher

PathMATE Transformation Maps for C++ & Build 8.02.011

2

5. Impact to Existing Projects
Version 8.02.011
As a result of BUG02225:

After updating to this version of PathMATE any realized code that
utilizes PfdString and the length service will have to be updated.
Previously length returned current contents buffer size() which was
typically string length + 1. Now length is equal to current string
length and size maps to the buffer size. Realized code needs to be
updated to account for this value change.

Version 8.02.010
As a result of REQ02237:

After updating to this version of PathMATE all multi-process properties
files that define load modules via ProcessID markings will need to be
updated to use the more accurate and current marking ProcessType.
Additionally De2faultProcessID was also updated to
DefaultProcessType.

PathMATE Transformation Maps for C++ & Build 8.02.011

3

6. New Features
Version 8.02.011

Design – C++
REQ02251 – Auto Configure a Minimal Process Config Table
To facilitate deployments to targets without files systems or without
topology configuration files, the PathMATE mechanisms have been
updated to allow deployments the ability to discover build their system
topology table at run.
To do this, start the process specifying a pid and port via the -pid and
-port command line arguments, and DO NOT specify a process config
table. Other processes connecting to it will add to its internal process
config table via the information provided in their connect messages.
A key limitation of this is the process cannot send messages to other
processes until those processes send a message to this process first.
REQ02253 – Complete the feature to specify listener port with
the “-port” argument
Specify the correct IP address when using the “-port” command line
argument
REQ02254 – Create an entry in the process config table from a
connect message
When a new process connects to the local process that was previously
unknown to the local process create an entry in the process config
table from the connect message.
REQ02296 – Hand Off Parameters Pattern - Support and
Stereotype
The Handoff Pattern a.k.a. the Send and Delete pattern will deallocate
serializable items after sending has been completed. This works for
both inter-process and inter-task messages and requires no changes
to existing PfdSerializable subclasses. To mark a service apply the
“HandOff” stereotype in the PathMATE Extensions profile.
The Hand Off Pattern is applicable when:
- Invoking a service through the non-local dispatcher,
- Invoking a service at multiple destinations via a routed non-local

dispatcher to a group of destination handles.
The Hand Off Pattern is not applicable when:
- Invoking callbacks to "Hand Off" services
- When invoking the service directly through the standard function

call
Please note that with the change:

PathMATE Transformation Maps for C++ & Build 8.02.011

4

- PfdSerializable now inherits from RCObject
- PfdRCSerializable class has been removed.

Version 8.02.010
Design

REQ02219 – Added DefaultProcessID System Marking
The DefaultProcessID marking can now be applied to the system, this
changes the default process name from MAIN to the specified name.
REQ02220 – Add RequireDomainAssignment System Marking
When the RequireDomainAssignment System marking is set to TRUE
transfomation errors are generated for each Domain not specifically
assigned to a process type or ANY. Default value == FALSE.
REQ02229 – Static Model Element Numbering
The elements that can be numbered include:
- Domains
- Classes
- Domain and Class Services '
- Serialized Types
Example markings:
- System,HugeExternalRealizedMsg,ProcessTypeIndex/MAIN,33344
- System,HugeExternalRealizedMsg,TaskIndex/SYS_TASK_ID_MAIN,

999
- Domain,HugeExternalRealizedMsg.ExternalMessages,DomainIndex,

300
- Object,HugeExternalRealizedMsg.ProcessImageDirector.TestTracke

r,ObjectIndex,1
- DomainService,HugeExternalRealizedMsg.RemoteShutdown.GroupT

est,ServiceIndex,1
- GroupType,Group<Integer>,SerializeIndex,1;2;3
Additionally, a template properties file can be generated to show the
default numbering scheme to aid in the transition to a static
numbering scheme. The file is
<systemname>_indices_properties.txt_gen
REQ02230 – Static Process Type and Task Index Numbering
The new C++ supports that static numbering of Process Types and
Task Indices , in the associated generated enumeration. The marking
to number elements is:
- System,<systemname>,ProcessTypeIndex/<processname>,#inde

x_value

PathMATE Transformation Maps for C++ & Build 8.02.011

5

- System,<systemname>,TaskIndex/<taskidname>,#index_value
Additionally, a template properties file can be generated to show the
default numbering scheme to aid in the transition to a static
numbering scheme.
The generated file name is as follows:
 <systemname>_indices_properties.txt_gen
The contents of the file contain property markings for all enum literate
values in use in the system generated files. The user can rename it
and include in the main properties.txt file to fix the values in
subsequent transformations.
REQ02237 – Rename ProcessID marking to ProcessType
Given the SPMD enhancements to the domain marking ProcessID was
update to the more accurate name ProcessType. Additionally
DefaultProcessID was also updated to DefaultProcessType.

Design – Build
REQ02216 – Expanded System Build Markings to be applied to
Domains
The following markings previously only available on the System, are
now available on both the System and Domains:

- AdditionalLibraries
- AdditionalIncludes
- Defines

REQ02236 – Lean Build
The lean build feature, which reduces the code compiled into each
process type load module is enabled via setting the system marking
EnableLeanBuild (Default ="FALSE") to TRUE. When enabled, realized
code for domains which are not specified to live on a load module are
not included into the build files.
Additionally the marking RealizedTypesPath was added to system and
domain elements, to allow types code, used throughout the system to
be included regardless of EnableLeanBuild being set to TRUE.
The new C++ supports that static numbering of Model elements in the
applicable generated enumerations through markings.

Design - C++

REQ02196 – Binary Instance Data Loading
The C++ map now supports the loading of binary instance data
streams and routing to appropriate domain and class methods.
Additional features including loading from a file (REQ02222) and
sending the instance data in a message (REQ02223).
REQ02217 – Add XMLServiceHandleSupport marking

PathMATE Transformation Maps for C++ & Build 8.02.011

6

The XMLServiceHandleSupport applied to the system has a default
value of ENABLED. If set to DISABLED the code to support incident
handle loading from an XML file is no longer generated.
REQ02222 – Binary Instance Data Loading – From a File
Binary Instance loading was extended to support the loading of data
from a file. See associated Technote for more information.
REQ02223 – Binary Instance Data Loading - Via Inter-process
Message
Binary Instance loading was extended to support the loading of data
on a remote process in blocks via inter-process messages. See
associated Technote for more information.
REQ02225 – Add Serialization Support for Long
Serialization support was added via the new put_long_in_buffer and
get_long_from_buffer services, following the standard PathMATE
serialization pattern.

Version 8.02.008
Design

REQ02185 – Do not Trim if Element is Externally Loaded
The PathMATE Self-Trimming feature has been updated to exclude
trimming of model elements which have been marked to be loaded via
C Static Instance Initialization or XML Instance Loading.
This can occur when self-trimming has been enabled for models in
which place holders for new functionality have been added.

Design - Build
REQ02190 – Add NIOS IDE Support
PathMATE Build Map now supports the generation of uOS (NIOS) IDE
project files. This also includes multi-process support.
REQ02199 – Add RTP support to VxWorks Workbench Projects
PathMATE Build Map now supports the generation of RTP project files.
for VxWorks Workbench 6.5.
REQ02207 – Preprocessor Definition Marking on Domains
As of PathMATE 8.2 C++ preprocessor definitions can be applied to
individual domains and not just the system, simplifying property
management across multiple deployments.
The marking is Defines and is a semi-colon separated list, as with the
System marking. For example:
Domain,*.MyDomain,Defines,NO_PATH_IE;PATH_STUB_MY_DOMAIN

Design - C++
REQ02115 – Remove legacy filesystem code conditionally
compiles with PATH_NO_FILESYSTEM

PathMATE Transformation Maps for C++ & Build 8.02.011

7

In mechanisms file "pfd_os.cpp", the section of code for accessing a
file system that only compiles to Win32 has been reworked to not
solely utilizes the PATH_NO_FILESYSTEM #define to conditionally
compile the code as well as support other operating systems.
Applications under Linux OS are now able to take advantage of this
feature.
REQ02182 – SuppressGeneration should not require SelfTrim
As of PathMATE 8.2, the SuppressGeneration feature will no longer
require that the SelfTrim feature is enabled. Requiring SelfTrim has
undesirable consequences, especially in sparse models or models with
place-holders.
REQ02191 – Add Single Process Multi-Deployment (SPMD)
Support
As of version 8.2 of PathMATE the C++ Map will support flexible start
up sequences using the Single Process Multi-Deployment (SPMD)
approach. For more information see the Multi Process Deployment
tech-note.
REQ02197 – Support realized external messages
PathMATE's multi-process support needs to be enhanced to support
the sending and receiving of realized inter-process messages, utilizing
the existing inter-process communication mechanisms.
REQ02201 – Allow Allocation of Model Elements to Multiple
Process Types
The PathMATE Multi-Process feature now supports the deployment of
Domains and Domain Services to multi build modules without requiring
there assignment to “ANY” process.
The ProcessID marking now accepts a semi-colon separated list of
process ids.
REQ02203 – Support for Group<DestinationHandles> as
Routing Parameter
The PathMATE Multi-Process feature now supports groups of
destination handles as routing parameters. The non-local dispatcher
shall dispatch a call to the specified domain service on each of the
specified target nodes.
REQ02204 – Support large socket messages
PathMATE Messaging mechanisms were expanded to support
arbitrarily sized socket messages. To support this feature
PdfSerializable was extended to require a getCurrentSize() method,
used by PdfProcess when constructing a PfdSocket message for
outbound traffic
REQ02205 – Add UDP port to process config table
The PathMATE Multi-Process feature now allows UDP ports to be
optionally specified in the process config table. For more information
see the Multi Process Deployment tech-note.

PathMATE Transformation Maps for C++ & Build 8.02.011

8

REQ02206 – Allow EXTERNAL process in the Process Config
Table
The PathMATE Multi-Process feature now allows "non-PathMATE"
process to be identified in the process config table. For more
information see the Multi Process Deployment tech-note.
REQ02209 – PathMATE "Internal" XML Parser
PathMATE has added a new simple XML Parser which does not require
the use of the Xercesc toolkit including linking in the library and
running with the dll. The parser has been designed to be platform
independent, not requiring a special build for various platforms.
Common and C++ templates and mechanisms have been added to
support this new feature, including InternalInstanceLoader cpp and
hpp.
However this parser provided limited error information and no pre-
loading validation against the generated schema. Additionally this is
now the default XML Parser while the Xerces option is still available.
For more information please see the XML Instance Loading tech-note
included in the DOCs folder of your PathMATE installation.
REQ02226 – Model Level Unit Testing
The C++ Map has been expanded with a set of test templates to allow
unit test to be defined in the model. Features include assert style
verification in addition to delayed validation for state machine
verification.
This feature requires the PathMATE Testing profile is applied to the
model.
REQ02227 – UnitTest++ Integration
Support for the unit test framework UnitTest++ was added. The use
of this framework is specified by the addition of the following marking:
System,*,TestFramework,UnitTest++

Version 8.01.000
Design

REQ01874 - Service handles to synchronous services (with
return values or output parameters) are permitted to be
created, but are never invoked.
A new transformation time check issues an error message if a service
handle create statement in action language references a synchronous
service.
REQ02120 - Allow values of enumerated data types to be added
to the model dynamically
A new marking called EnumValuesFile can be set on a user defined
enumerated type. The property specifies the path to a file containing
a whitespace separated list of enum literals. The templates replace

PathMATE Transformation Maps for C++ & Build 8.02.011

9

the literal values specified in the model with the values specified in the
file.

A new engine extension called addEnumerationLiteral was added. The
parameters to this engine extension are
- the qualified name of the enumerated data type
- a whitespace separated list of literals to add
- a flag taking TRUE or FALSE as a string, where TRUE replaces the
literals from the model, and FALSE adds them to the set from the
model
REQ02185 – Do not Trim if Element is Externally Loaded
The PathMATE Self-Trimming feature has been updated to exclude
trimming of model elements which have been marked to be loaded via
C Static Instance Initialization or XML Instance Loading.
This can occur when self-trimming has been enabled for models in
which place holders for new functionality have been added, resulting in
proper validation of correct instance populations.

Design - Build
REQ02160 – Generate VS Projects to utilize Multi-core support
PathMATE Build Map now generates models into multiple Visual Studio
projects (one per domain and one for the system) to utilize the Visual
Studio ability to build each project on a different core, speeding up
build times on multi-core machines

Design - C++
REQ02121 - Support instance reference parameters in service
handles in XML file
Instance based services can now be loaded into an incident handle
attribute using an XML file. The value of the XML _x0040_id field of
the instance can be used as a value for the this parameter in the
incident handle.
In the example below, the op attribute of the Scripting_Action class is
an incident handle. The op incident handle is set to the instance based
print service of the System class in the Scripting domain. The this
parameter of the incident handle determines which instance will be
used when the incident is called. In this case the this parameter is set
to 1 which refers to the System instance declared in the file with the
_x0040_id value of 1.

<Scripting_System>
<name>TestSystem</name>
<_x0040_id>1</_x0040_id>
</Scripting_System>
<Scripting_Action>
<op>Scripting.System.print(this=1)</op>

PathMATE Transformation Maps for C++ & Build 8.02.011

10

<_x0040_id>141</_x0040_id>
</Scripting_Action>

REQ02123 - Support a hash map implementation of groups
A hash map implementation of groups is now supported. The integer
index is the key in the hash map. Set the TypeImplementation
marking on the attribute or PAL statement that creates the group. PAL
operation group[index] is used to index the hash for read and write.

For example:
Group<Real> valGrp; { TypeImplementation="Hash" }
valGrp[0] = 12345.67890;
val = valGrp[0];

REQ02124 - Allow PfdTask to interface with external event
queue

REQ02125 - Provide external interface to shutdown model
execution
Provide a method on the generated System class to shutdown the
application. This clears the event queue, calls domain services marked
with the <<Shutdown>> stereotype, and cleans up instances. This
does not call SW::Shutdown() or cause the program to exit.

REQ02126 – Allow implementation for derived services to be
specified in the markings
The property InlineCode, attached to a DomainService or
ObjectService model element, can contain an implementation macro.
The parameters to the service are referenced using the order of
arguments. For example, 1 is the first parameter.

For example, the UT:Assert service is tagged as Derived in the model.
In PAL, it looks like:
UT:Assert(val, 1);

The properties.txt file include the line:
DomainService,*.UT.Assert,InlineCode,if (1 != 2) { cout <<
"ERROR" << endl; }

So the generated code for the PAL above would be:
if (val != 1) { cout << "ERROR" << endl; }
Support for commas in the value field for a property in the
properties.txt file has been added. This is required to support the
InlineCode feature property, since some inline code will require
commas. See the common template gen_read_properties.arc.

PathMATE Transformation Maps for C++ & Build 8.02.011

11

REQ02161 – Invalid Guard Condition should throw
Transformation Error
Now invalid guard conditions result in a transformation error, as
opposed to a compilation time error.

PathMATE Transformation Maps for C++ & Build 8.02.011

12

7. Defects Repaired
Version 8.02.011

Design – C++
BUG02225 PdfString length_ not correctly set on overwrite
BUG02246 Non-Main Task Synchronous problem
BUG02247 Non-Main Task Single Process problem
BUG02248 Potential Memory Leak - Deliver on a callback using

advanced realized types
BUG02249 ARTs Not Deallocated
BUG02250 Internal instance loader caused an Assertion Failure
BUG02255 pdfString length_ not correctly set on overwrite
BUG02258 Preprocess Directives for getTopology in process.* not

defined consistently.
BUG02259 SPMD Issue (Process Type Markings Transformation

Error)
BUG02260 XML Truncates Reals
BUG02263 With 8.02.010, cannot create XvWorks builds that

compile and build.
BUG02264 8.02.010 does not compile for NIOS
BUG02272 Instance loader does not close XML files
BUG02284 Binary Instance Data Loading doesn’t write Boolean

attributes
BUG02286 Can't mark domain service to run where domain isn't

Version 8.02.010
Design – C++

BUG02163 There is a memory leak in C++ multi-process
deployments using service handles

BUG02210 Using Local Memory Pools causes Multi-process
Deployment Crash

BUG02218 Internal XML Loader Sporadic Issue
BUG02228 State Based Test Overrun
BUG02235 SPMD doesn't properly handle elements interacting of

different multiple processes

Version 8.02.008

PathMATE Transformation Maps for C++ & Build 8.02.011

13

Design – C++
BUG02165 cpp compilation error - Incorrect use of ctime_r
BUG02166 cpp compilation error - pfd_wait_for_semaphore invalid

Linux code
BUG02167 cpp compilation error - In SAX2Instance Loader stricmp

not supported
BUG02189 XML Instance Loader – Compilation error in Service

Handle Loader for Domains without Interface
BUG02192 SPMD local call ends up remote
BUG02193 Incomplete Serializer Utility Functions
BUG02194 Support File System on Linux by Default.
BUG02195 Linux build erros caused by clock_gettime used in

OS_POSIX
BUG02198 Passing NULL as a serializable ART parameter causes

crash
BUG02200 PathMATE XML Loader and SPMD Does not support 64-

Bit Linux
BUG02202 SPMD remote call ends up as a local
BUG02208 Internal XML Parser Does not Handle Comments

Correctly

Version 8.01.000
Design

BUG02130 Commas not allowed in properties files as values.
Design – C++

BUG01693 PATH_NO_DOUBLE defined even when operation has
Real parameter

BUG02090 An intertask incident may fail to wake up the receiving
task (POSIX).

BUG02092 Memory leak in tasking mechanism.
BUG02094 Wrong definition of thread_mutexattr_t in critical.cpp

mechanism file
BUG02096 Bad return in the pfd_start_task_param routine (POSIX)
BUG02100 Service handles are not allocated from any memory pool
BUG02108 Use of ctime is not thread-safe
BUG02109 Cannot compare two incident handles for equality.
BUG02116 Need to qualify substate names in transition actions and

handlers.

PathMATE Transformation Maps for C++ & Build 8.02.011

14

Design – Build
BUG02101 Generated Visual Studio project explicitly link to

libcmtd.lib.
BUG02113 DirCommand Extension fails on .h file lookups
BUG02119 PATH_NO_STREAMS is defined by default for VxWorks

builds, however it should be configurable.

PathMATE Transformation Maps for C++ & Build 8.02.011

15

8. Known Limitations
Version 8.02.011

BUG02093 Generated and mechanisms code generate copious
warning messages while compiling.

BUG02144 Groups of Incident Handles are not supported as
Primitive Types. Use Group<ServiceHandle> instead.

BUG02145 Hash Table implementation of Groups not Supported in
VS2005+.

BUG02285 Complete error reporting for Binary Instance Data
Loading

