
Pathfinder Solutions

N

S

W E

 web: www.pathfindersol.com
90 Oak Point Wrentham, Massachusetts 02093 U.S.A voice: +01 508-384-1392
 fax: +01 508-384-7906

Using Realized Types in a Multi-Processor Design

5/1/04

Carolyn K. Duby

version 1.2

copyright entire contents 1995 - 2004 Pathfinder Solutions all rights reserved

Motivation
When integrating with realized domains it is often necessary to hold a handle to a realized type that must be

sent as a parameter to a service or set as a parameter to a service handle. This paper describes ways to

extend the Pathfinder design to incorporate realized types passed in service calls or service handles across

process boundaries.

Defining a Realized User-Defined Type
To define a realized type, open the type file for the appropriate scope. The type file for the system is

located in <system_encyclopedia>\types\<system_name>.typ. The type file for a domain is located in

<domain_encyclopedia>\types\<domain_prefix>.typ. Add a user-defined type based on the built-in Handle

type as follows:

EXTERN TYPE <type_name> Handle {ReferencedType = "<base_type>"

Serializeable = "T" ReferenceCounted = "T"}

The keyword EXTERN indicates that springboard will recognize the type and treat it as a Handle.

However, the templates will not generate a definition of the type. The definition must be declared in the

sys_def.hpp file or a file containing the definition must be included in the sys_def.hpp file. The

<type_name> is the name of the type as it will be used in the analysis models.

Extern types that are sent across processor require a few properties to be defined in {} after the type

definition. The ReferencedType property is the type that will be allocated when a new instance of the

handle is created. For example, the templates will need to create a new instance of the handle when the

realized type is sent across the process boundary. The templates will generate code similar to the

following:

<type_name> new_handle = new <base_type>;

The Serializeable property equal to "T" indicates that the type may be serialized and passed across

processor boundaries and to Instrumented Execution. Serializeable equal to "F" means that the type may

not be passed across processor boundaries and will be shown in Instrumented Execution as an address. If

the Serializeable property is "T", the type must map to a pointer to a class derived from either

PfdRCSerializeable, for reference counted handles, or PfdSerializeable, otherwise. See the description of

the ReferenceCounted property for more information.

The ReferenceCounted property indicates if the realized type is reference counted. Reference counting is

a mechanism for deallocating the memory associated with a handle when there are no more references to

the handle. Reference counting avoids memory leaks when using realized types. Alternative ways to deal

with memory cleanup are calling an explicit realized service to deallocate the handle when it is no longer

needed or defining the Explicit Delete property of an attribute. A value of "T" indicates that the type is

reference counted an will be accessed through a smart pointer. For a discussion of smart pointers, consult

Scott Meyers' book More Effective C++, Item28. If the ReferenceCounted property is "F", the type will

be accessed through a regular C++ pointer. If ReferenceCounted is "T", the type must be a pointer derived

from the class PfdRCSerializeable. If RefenceCounted is "F", the type must be a pointer derived from

PfdSerializeable.

Implementing a Realized Type
• Declare a new class derived from PfdSerializeable, if not using reference counting, or

PfdRCSerializeable, if reference counting.

• Add a default constructor to the derived class. The default constructor will be called when a new

instance of the class is allocated. For example, when deserializing a realized instance when it is

received as part of a service handle.

• Implement the pure virtual methods:

// serialize - save the realized type to a buffer

 virtual void insertToBuffer (message_buffer_t *msg_buf, int *msg_len, bool_t is_ascii = FALSE);

 // create a new instance of the realized type and call internalExtractFromBuffer to deserialize it

 static RealizedType* extractFromBuffer(message_buffer_t* msg_buf,int *msg_len,

 bool_t is_ascii);

 // deserialized - populate this instance with the values from the given buffer

 virtual bool_t internalExtractFromBuffer(message_buffer_t* msg_buf,int *msg_len,

 bool_t is_ascii);

 // virtual copy constructor - dynamically allocate a new instance of the realized type and

 // call the copy constructor

 virtual PfdSerializeable* duplicate();

#ifndef NO_PATH_IE

 // convert this instance to its string representation as displayed in Spotlight – This function is

 // called to show a realized type in the Spotlight watch window

 virtual void convertToString(PfdString& str_value);

 // set the values of this instance from its string representation in Spotlight – This function is called

 // when the value of a realized type is changed in the Spotlight watch window. Return the position

 // of the first character in the next token

 virtual void readFromString(const PfdString& str_value, int& curr_char);

#endif

• Add a typedef to define the user defined type to a pointer to the realized type. For example

typedef RealizedType* RealizedTypeHandle;

where RealizedType is the name of the class derived from PfdSerializeable or PfdRCSerializeable and

RealizedTypeHandle is the name of the extern user defined type referenced by the models and defined in

the type file.

• Add other member functions and member variables necessary to implement your realized type.

• Add a realized domain to your Domain Chart with services that create and manipulate the realized

type.

• For serialized types, create a smart pointer:

In the header file:

BEGIN_DECLARE_SMART_POINTER(SmartRealizedTypeHandle, RealizedType)

DECLARE_CONVERSION(PfdSmartSerializeable)

END_DECLARE_SMART_POINTER

In the .cpp file:

DEFINE_SMART_POINTER(SmartRealizedTypeHandle, RealizedType)

DEFINE_CONVERSION(SmartRealizedTypeHandle, PfdSmartSerializeable)

