

Java/EJB Translation Rules

version 0.6

6/10/02

copyright 2002 Pathfinder Solutions, all right reserved.

N

S

W E

 1

1. INTRODUCTION 3

2. REFERENCED DOCUMENTS 4

3. TERMS AND DEFINITIONS 4

4. TARGET DOCUMENT SET 4

4.1 DIRECTORY HIERARCHY 5

4.2 JAVA FILES 5

4.3 RELATIONAL DATABASE SCHEMAS 5

4.4 EJB SPECIFIC FILES 5

4.5 MECHANISMS 5

5. STRUCTURAL DESIGN 5

5.1 HARDWARE 6

5.2 SOFTWARE 6

6. MBSE TO RELATIONAL DATABASE TRANSLATION RULES 6

6.1 ATTRIBUTE 6

6.2 OBJECT (UML CLASS) 6

6.3 RELATIONSHIP 6

6.3.1 BinaryRel 6

6.3.2 SubSuperRel 7

6.4 CURRENT STATE 7

6.5 INTERDOMAIN RELATIONSHIPS 7

7. MBSE TO JAVA/EJB TRANSLATION RULES 8

7.1 DOMAIN CHART CONSTRUCTS 8

7.1.1 Bridge 8

7.1.2 Constant 8

7.1.3 DataType 8

7.1.4 UserDefinedType 9

7.1.5 Domain 9

7.1.6 System 10

7.2 INFORMATION MODELING CONSTRUCTS 10

7.2.1 Attribute 10

7.2.2 Object (UML Class) 11

7.2.3 Relationship 11

7.3 STATE AND SERVICE MODELING CONSTRUCTS 12

7.3.1 Action 12

7.3.2 Event 13

7.3.3 Generate 14

7.3.4 State Transition Table 14

7.3.5 Output Parameters 14

7.4 ACTION LANGUAGE 14

7.4.1 AttributeSelection 14

7.4.2 Create 15

7.4.3 CreateServiceHandle 15

7.4.4 Delete 15

7.4.5 Expression 15

7.4.6 Instance Lookups - Find/Foreach 15

7.4.7 InvokeServiceHandle 16

7.4.8 Link 16

7.4.9 Navigation 16

7.4.10 ServiceInvocation 16

7.4.11 SubSuperNavigation 16

7.4.12 Unlink 16

7.5 MBSE SEMANTICS 17

7.5.1 Timers 17

7.5.2 Instance Lists 17

 2

7.5.3 Service Handles 17

7.5.4 Task 17

7.6 JAVA SPECIFIC ISSUES 18

7.6.1 Exceptions 18

7.7 EJB SPECIFIC ISSUES 18

7.7.1 Loopbacks 18

7.7.2 Exceptions 19

7.7.3 Transactions 19

7.8 REALIZED INTERFACES 20

8. MODELING CONVENTIONS AND RESTRICTIONS 20

Version Date Person Comments

0,1 6/15/00 Greg Eakman Created

0.2 6/20/00 Greg Eakman Feedback from Tom M and Steve R

0.3 6/29/00 Carolyn Duby Fix several typographical errors

0.4 7/3/00 Greg Eakman Update with Carolyn’s comments, add

transactions and exceptions

0.5 7/17/00 Greg Eakman Add comments

0.6 7/10/02 Greg Eakman Clean up

 3

1. INTRODUCTION

Model Based Software Engineering (MBSE), as presented by Pathfinder Solutions, is a rigorous,

complete, unambiguous, high level executable model of a particular problem domain. As such,

this model can be translated into other executable implementations in the form of source code.

Model data is stored in an MBSE meta-model database. A set of translation rules in the form of

ASCII templates, read and interpreted by Springboard, produces the source code. Springboard is a

translation engine that extracts the semantic information contained in your UML analysis models

and presents it in textual form via a flexible and simple template notation. See the Springboard

Users Guide for more information on what data is accessible through the templates and the format

and structure of templates.

This document describes the mapping of analysis into a Java/EJB design using Springboard and

translation templates. The reader is assumed to have a working knowledge of Model Based

Software Engineering (MBSE). The reader is also assumed to be familiar with the Unified

Modeling Language (UML) and EJB. See Enterprise JavaBeans, Second Edition, Richard

Monson-Haefel, published by OReilly and associates, for more information on EJB.

It is also assumed the reader is familiar with the terminology, concepts and conventions presented

in:

"Model Based Software Engineering – an Overview of Rigorous and Effective Software

Development Using UML" 1998, Pathfinder Solutions, Inc.

The document is organized by the major constructs within the MBSE meta-model. A brief

description of each analysis construct is provided, followed by the mapping rules used to generate

Java source code to be integrated with an EJB container and server. Where choices in the

implementation can be made, properties are defined which guide the templates on how to translate

the construct. These properties can be set either within the Model Editor through Pathfinder

Extensions, or can be set at translation time using the SetProperty capability in the Springboard

Template Language. Properties can also be inferred by the translation templates based on the

models themselves.

 4

2. Referenced Documents
Enterprise JavaBeans, Second Edition, Richard Monson-Haefel, OReilly and Associates

Springboard User’s Guide

"Model Based Software Engineering – an Overview of Rigorous and Effective Software

Development Using UML" 1998, Pathfinder Solutions, Inc.

3. TERMS and DEFINITIONS

Templates a set of text files that capture patterns to define the structure, fixed contents, and

variable contents (corresponding to OOA model elements) of the target document set, using

Syntactic Elements that conform to the notation specified in the Springboard User’s Guide.

EJB Enterprise Java Beans

Extraction the portion of the translation process when Springboard reads the OOA modeling

information captured in your CASE database

JVM Java Virtual Machine. This is the runtime system responsible for the execution

of Java bytecodes produced by compiling Java source code.

MBSE Meta-Model the MBSE/UML Information Model that describes MBSE and stores

the application models for translation.

Parsing the portion of the translation process when Springboard reads the templates in

preparation for production

Production the portion of the translation process when Springboard executes the templates,

populating your target document set with the OOA information acquired during extraction

Property a name-value pair associated with a MBSE/UML model element

Target document a file or document produced by Springboard as the result of executing an

OUTFILE directive

Target document set the complete set of target documents produces by a single execution of

Springboard on a set of templates

Translation the execution of Springboard performs 3 steps in order: Template Parsing, OOA

model Extraction, and Target Document Production

4. Target Document Set
Considering the task of translation at the highest level, the goal is to establish a set of instances of

target documents with a set of OOA analysis data according to specified templates, or templates.

The templates specify the specific analysis information required, how it’s arranged, and in what

context.

The above paragraph helps us identify the major tasks/components of a translation:

- Develop a set of templates to define our target document set

- Employ Springboard to validate the correctness of the new templates

- Apply the proven templates with Springboard to produce the Target Document Set

 5

The target document set consists of a set of Java files, organized in a directory structure that

reflects the hierarchical Java package structures. The target document set also includes, where

possible, deployment descriptors for the target EJB server. The target document set also includes

the relational database schemas derived from the models.

4.1 Directory Hierarchy
Java organizes classes by packages, and, in the development environment, these package

names are reflected in the directory structure. The generated Java files will be placed in a

directory structure based on the Domain Chart, with the system name (Domain Chart

name) as the top level class, and each of the domains as a subdirectory and subpackage of

the system.

A Package property on the domain chart will be available to specify the upper parts of the

package hierarchy. Most packages reflect the DNS domain name of the company

producing the Java software – e.g., com.pathfindersol.java.mechanisms. The

corresponding high level directories will be created in the document set.

4.2 Java Files
Generally, each UML class and Domain will result in one Java file that contains the

implementation of the class. In some cases, more than one file and Java class is required

to support the EJB design.

Java filenames must reflect the top level class they contain.

The content of the files, the Java source code, will conform to de-facto standard format

and naming conventions, and will be tailored to any coding standards required by the

client.

In addition, a makefile is generated for the package that uses the Sun JDK command line

compiler. If a standard IDE is chosen as the Java development environment, it may be

possible to generate the project file for the IDE.

4.3 Relational Database Schemas
The relational database schemas consist of a set of instructions to create tables and

columns within a relational database. The schemas use basic SQL constructs to construct

the database.

During development, it is expected that the Information Models, and the derived database

schema will change often. Depending on the scope of the changes, the existing tables can

be destroyed and wholly replaced by the new set of tables. A process must be designed

by which existing data in the database is not lost in this process. One alternative is to

back up the data before clearing the database, then restoring it into the new tables.

Another approach is to pass the new tables through a diff-like filter that can compare the

old and new schemas, then generate appropriate SQL commands to update the existing

table, preserving all data.

4.4 EJB Specific Files
There are some EJB specific files that can be generated based on the UML models and

properties attached to them. The XML deployment descriptor for EJB 1.1 is one of them.

Depending on the EJB server specific deployment process, other files may be generated

to aid and automate the deployment process.

4.5 Mechanisms
A set of mechanisms, in the form of source code, will be provided by Pathfinder

Solutions. These mechanisms provide the classes required to execute the MBSE

semantics within the Java language.

 6

5. Structural Design
This document mainly addresses the Mechanical Design aspect of system generation, translation

rules and supporting mechanisms. The a general structural design consisting of the hardware

layout, the software technologies, and component allocation in the distributed environment is

presented here as context for the translation rules.

5.1 Hardware
The hardware for the system usually involves multiple layers. EJB is generally an N-tier

client server approach, although that has no relation to the hardware incolved. All tiers

may be running on one machine, or one tier on multiple machines.

5.2 Software
The business servers can be running the BEA Weblogic EJB Server or the J2EE supplied

server. Supporting other servers is only a matter of generating the XML deployment

descriptors.

The generated code is independent of any relational database product. Variations in the

SQL support between vendors may require changes to the RDB schema generation

templates.

6. MBSE to Relational Database Translation Rules
Relational databases define the persistent storage of data. The data stored is reflected on the

Information Model for each domain.

6.1 Attribute
supertype: none; subtypes: none

An Attribute maps to a column in a class’s table in a relational database. The data type of

the attribute is mapped into the data types supported by the database. Attributes with the

Identifier property are added to the constraints of the table.

Only attributes of persistent classes will be added to the schema. In addition, an attribute

of a class may be marked with the boolean Transient property, in which case the attribute

will not be included in the schema. By default, all attributes of a persistent class are

persistent.

Data types, such as ServiceHandle and Handle must be mapped to a database supported

type. One simple possibility is to serialize the Java object pointed to by the handle into a

Blob attribute in the database. Handles to realized classes that are persistent can be

serialized using Java serialization and then stored in a database in binary form. Handles

to classes in other analyzed domains can also be serialized. If the handle is to an

EntityBean, however, the handle must map into storage of the PrimaryKey of the

EntityBean or into the EntityBean’s handle (javax.ejb.Handle interface).

6.2 Object (UML Class)
supertype: none; subtypes: none

Each persistent object, marked by the Persistent property, results is a table in the

database. The table name is based on the domain name and class name. Each table has

an additional primary key integer attribute. This attribute is dependent on the unique ID

generation capability available in most databases.

If one or more attributes are marked with the Identifier property, those attributes are

included in an SQL UNIQUE CONSTRAINT clause within the schema. Note that this

approach supports only one unique key based in addition to the uniquely generated

integer key. If more UNIQUE constraints are required, an additional Unique property can

be added, with a string value of the form: attr1, attr2; attr1, attr3, where the unique

 7

attribute constraints are separated by “;” and the attributes within the constraint are

separated by “,”.

6.3 Relationship
supertype: none; subtypes: BinaryRel, SubSuperRel

6.3.1 BinaryRel
supertype: Relationship; subtypes:none

Binary relations are formalized by placing the primary key attribute in the right

table to support relational database Normal Form. For many to many

relationships, an additional table will have to be created to store the relationship,

if it does not already exist in the models.

6.3.2 SubSuperRel
supertype: Relationship; subtypes:none

Classes in Supertye/Subtype relationships are mapped into multiple tables, one

table per class. The SubSuper relationship is implemented as a 1:1

unconditional relationship in the database schema. Each subtype has a

formalizing attribute to its supertype class table. MBSE constraints apply to the

instances in these tables – each subtype instance must have a corresponding

supertype, and each supertype must have a corresponding instance in one of the

subtype tables. Supertype tables add a column, SubType, that defines the table

to look for the related subtype instance.

Traversing the relationship from super to subtype in the database requires two

steps, as the supertype instance may be associated with only one of many

instances in other tables. The first step is to extract the supertype data from the

table, along with the table identifier of the subtype table. This is then used to

access the subtype table for the associated instance.

An alternative that was discarded was collapsing supertypes into the subtype

tables, duplicating the columns among subtypes. This removed the downcasting

problem from super to subtype, but, since all relationships to the supertype must

be duplicated downward, traversing from one table to the supertype gets the

same complexity.

Classes that participate in SubSuper relationships must use bean managed

persistence, due to the difficulties in configuring container managed persistence

with inheritance.

6.4 Current State
supertype: none; subtypes: none

The current state of persistent, active objects is stored in the database as an integer.

6.5 InterDomain Relationships
Multiple domains will be stored in the database. Without interdomain relationships, each

domain is an island, unconnected to the others. Specifying relationships between classes

in different domains can speed up the access process by optimizing out the Java

processing. This may not be applicable to all systems.

An example of an interdomain relationship is the relationship between a Customer in the

CustomerProfile domain and an Order in OrderManagement. Separation by subject

matter dictates that these are in a different domain, but there is a relationship between

them nonetheless.

 8

There are a couple of Analysis patterns that could be applied to interdomain relationships.

First, an OrderingCustomer class could be added to the order management class. This is

not the same as the Customer class in the CustomerProfile domain, since you cannot have

the same class in multiple domains, as it violates subject matter separation. The

OrderingCustomer is a reflection or view of the customer separate from his profile, and

only captures aspects of the customer relating to the order. System requirements dictate

that each OrderingCustomer must also be a Customer, so there is a 1:1c association from

Customer to OrderingCustomer (a Customer that has never ordered anything is not an

OrderingCustomer).

The second pattern creates a 1:Mc interdomain relationship directly between the Order

and the Customer. An attribute is added to the order that is a handle to the Customer. In

addition, a InterdomainRelationship property is added to the attribute to indicate that it is

a handle to the CustomerProfile.Customer class. This property will formalize the Order-

Customer relationship in the database by adding a column for the Customers key to the

Order table. This allows standard SQL queries to be made directly on the database

outside of analysis.

7. MBSE to Java/EJB Translation Rules
This section is broken down by the into sections based on the following MBSE constructs, Domain

Chart, Information Modeling, State and Service Modeling, and Action Language. While this

breakdown overlaps somewhat, it is easiest to consider these as sections.

This document only covers the large grained mappings for MBSE/UML to Java and EJB. Each

section describes the mapping in a straight Java design, then the mapping using EJB. See the

Springboard Users Guide for the full list of analysis elements accessible in the templates.

In cases where there are alternative translation rules that can apply, properties can be assigned to

MBSE analysis constructs to guide the templates in the translation. Properties are name-value

pairs associated with analysis elements, where the names are project-specific string constants.

Properties can be specified in the model editor, or at translation time in the templates, using the

SetProperty command in the Springboard Template Language. In each section, if there are

possible alternative implementations, these are discussed, as well as the trade-offs, and property

names are defined to guide the translation.

7.1 Domain Chart Constructs

7.1.1 Bridge
supertype: none; subtypes: none; A requirement flow line connecting two

Domains on the domain chart.

A bridge defines the requirements level relationship between domains, as well as

the service invocations that are made from one to the other. There is no

implementation reflection of bridges in the implementation, except for package

imports.

7.1.2 Constant
supertype:

System and domain wide constants are mapped to public static final member

variables of the System of Domain classes. The constants are defined in the

initialization hook .pal file along with the value.

7.1.3 DataType

 9

supertype: none; subtypes: BaseType, GroupType, GroupIterType,

InstanceReferenceType, ServiceHandle, UserDefinedType; The data type for

an atomic data item

7.1.3.1 BaseType
supertype: DataType; subtypes: none; A built-in, predefined type

All base data types map to base data types in Java, int, String, double,

etc.

Since Java passes everything by value, it is not possible to support

output parameters from services with native Java data types. See the

section on Services for more information.

7.1.4 UserDefinedType
supertype: DataType; subtypes: UserEnumerate, UserNonEnumerate; A data

type defined by the user

7.1.4.1 UserEnumerate
supertype: UserDefinedType; subtypes: none; An enumerate defined

by the user

Enumerated data types are not supported in Java. Instead, they are

mapped to a series of public static final int member variables of either

the System or Domain class, depending upon the scope of their

definition.

Another possible implementation to consider here is to make each

enumerated type its own Java class. This allows the language’s type

checking to verify that any use of an enumerate is valid within that

context. The class itself contains factory methods to return the human-

readable name of the enumerate, the next enumeration in the list, etc.

7.1.4.2 UserNonEnumerate
supertype: UserDefinedType; subtypes: none; A non-enumerate data

type defined by the user

Since there is no concept of a typedef in Java, all non-enumerated user

defined types are implemented as their corresponding Java base types.

All realized types will be handles to classes. The base type handle will

be used for these types.

In the EJB implementation, the data type must be Serializable, or must

be transient everywhere it is used.

7.1.5 Domain
supertype: DataTypeScope; subtypes: none

Domains are mapped into Java packages that contain the classes within the

domain. In addition, a domain Java class is created that contains the domain

services and the domain data types.

In EJB, the domain class will be mapped to a session bean if it has the

EjbSessionBean property set to TRUE. The bean may be stateless or stateful,

depending on results of further performance and throughput investigations. A

property called EJBSessionBeanType could also be defined if the translation

templates needed to support both session bean types.

 10

Each EJB session bean that corresponds to a domain will have an instance of a

PfdTask object to manage the event queue and timers for services that are

invoked through it. The task will execute until there are no more events in the

queue and no timers left active. Since the bean is stateless, the PfdTask instance

will be refreshed to its initial state of an empty queue when finished with the

service.

The domain’s session will serve as a wrapper for the domain’s implementation in

a non-EJB class. The implementation class will look much like it does in the

straight Java design, with static methods. Within a process, all services invoked

in a domain local to the process will be through the implementation class.

Across processors or processes, a session bean will be used. This will reduce the

incidence of loopback/reentrance issues, though cross-process loopbacks are still

possible.

For Example

class DomSessionBean extends SessionBean

{

public PfdTask task = new PfdTask();

void Service()

{ task.clear(); DomImpl.Service(); task.processOOA(); return;};

void Another () { ... };

}

class DomImpl

{

public Service()

{

// regular generates, etc

DomImpl.Another(); // local service

// For cross process, create session bean + invoke session service

...

}

public void Another() { ... };

}

OReilly EJB, p362 recommends avoiding chained stateful session beans.

Chained session beans are beans that invoke other beans, all stateful. If a session

times out, the whole state of that set of beans is corrupted and irrecoverable.

Since domain invocations will result in chained session beans, the

recommendation seems to be stateless sessions.

7.1.6 System
supertype: DataTypeScope; subtypes: none

The system is mapped to a package with the same name as the domain chart.

This package contains all of the domain packages and the Sys class, which

defines the system wide enumerated types and support for the mechanisms.

7.2 Information Modeling Constructs

7.2.1 Attribute
supertype: none; subtypes: none

 11

An Attribute maps to a class attribute in Java. Currently the attribute is package

visible and accessed directly in the implementation.

In EJB entity beans, attributes also map to a property or field in persistent

classes. All attributes that are to be container managed must be declared public

to allow the EJB container to manage them. Read and Write accessors will be

implemented using the set/get<attrName> pattern in the bean interface. Since it

is possible that some attributes may not be persistent, an optimization would be

an Attribute level boolean Transient property.

If the IM is the basis for the RDB schema, using the relational database schema

translation templates, then the mappings for EJB can be easily generated. If

another schema is used, the EJB mapping becomes more complicated, and

should be done using the EJB servers deployment capabilities.

Attributes of container managed entity beans are mapped to database tables

through deployment descriptors, which are in XML format for EJB 1.1. Given

straightforward mappings, we can generate most of this XML deployment

descriptor directly.

7.2.2 Object (UML Class)
supertype: none; subtypes: none

A UML class is mapped to a Java class. All MBSE modeled classes are

subtypes of PfdObject, for passive classes, or PfdActiveObject, for classes with

state machines. PfdActiveObject also inherits from PfdObject.

In EJB, the PfdObject and PfdActiveObject are interfaces that are implemented

by the EntityBeans.

A class is persistent if the Persistent property is set to TRUE. The translation

rules will assume that a table has been created via the RDB templates to

correspond to this class.

Persistent classes are mapped into EJB entity beans. Entity beans can be either

container managed or bean managed. By default, the translation rules will use

container managed persistence, since this is generally easier, and since there is a

1:1 mapping between the classes and the RDB schema. If container managed

persistence is required, an EJBEntityBeanType property will be added.

MBSE/UML classes mapped to entity beans will generate 4 classes/interfaces

within the domain package:

Remote interface <classname>

Primary Key class <classname>PK

Home interface <classname>Home

Bean class <classname>Bean (Container or bean managed)

See documentation on EJB Entity beans for definitions and uses of these classes

and interfaces.

UML classes that participate in sub/super relationships cannot be mapped to a

container managed Entity bean. Based on research and prototyping, container

management of the superclass bean data does not operate correctly. Bean

managed persistence will be used for classes in a sub/super relationship in the

analysis.

 12

The remote interface for translated classes will need to integrate with the

mechanisms. Interfaces equivalent to PfdObject and PfdActiveObject classes

will have to be developed and added to the mechanisms. Attributes of these

classes will be added during translation to generated bean classes, as will

implementation of the interface methods.

7.2.3 Relationship
supertype: none; subtypes: BinaryRel, SubSuperRel

7.2.3.1 BinaryRel
supertype: Relationship; subtypes:none

By default, a binary association maps to a Java object reference. This

assumes that all instances of all classes within the domain are in

memory at the same time.

Since, in an EJB implementation, all instances related to an object may

not be in memory at once, there must be a way to traverse an

association from an in memory class to related classes in the database.

To achieve this, formalizing attributes, already added to the tables

through the RDB schema translation, will be added to the EJB classes.

See the action language section on Relationships for more information

on the use of formalizers to traverse relationships, link, and unlink.

References to transient classes will not have a formalizing attribute.

Associations that are [0|1]..* to [0|1]..* (many to many) do not require

an associative object in MBSE. The associative table is created by the

RDB templates, but no corresponding Java/EJB class will exist.

7.2.3.2 SubSuperRel
supertype: Relationship; subtypes:none

Subtype or inheritance relationships are mapped to the extends keyword

in Java. Java does not support multiple inheritance, but then neither

does MBSE/UML.

EJB Entity beans implement the EJB interfaces, and can therefore

extend other modeled classes or PfdObject or PfdActiveObject.

As mentioned in the Object section, classes in sub/super relationships

must be bean managed entity beans,

7.3 State and Service Modeling Constructs
The combination of domain services, state machines and actions, and class services make

up the dynamic model of the domain. These constructs model the dynamics of the

business logic of the particular domain. In a typical EJB design, all business logic is

given to the session beans, keeping the entity beans very simple containers of data and

relationships.

So, two basic implementation alternatives exist for mapping the state actions and instance

base class services: attach them to the entity bean or create a separate class for them.

Since the instance services and state actions cannot be called from outside the domain,

there is no need for them to be session beans. The class consisting of state and instance

 13

services will be an EJB client and an adjunct to the entity bean. This is in keeping with

the EJB model of keeping entity beans as very simple data stores.

7.3.1 Action
supertype: none; subtypes: Service, State; the parent of all analysis elements

with action language

7.3.1.1 Service
supertype: Action; subtypes: DomainService, ObjectService

7.3.1.1.1 DomainService
supertype: Service; subtypes: none

For the straight Java design, domain services map to static

methods of the domain class. For realized domains, an

interface with the same methods and signatures is defined. To

realize the interface, this domain interface must be satisfied by

a hand-coded class. At startup, an instance of this class is

created and registered with the realized domain. The static

methods invoked by the analyzed services are then passed to

the registered class that implements the domain interface.

For the EJB design, domain services will be mapped to

instance based methods of the domain’s session bean class.

Services that generate events will create a PfdTask instance to

manage the event queue and wait until all events are processed

and timers expired before returning.

Instance based services in EJB will be mapped to an adjunct

class for entity beans. The adjunct class separates the business

logic from the bean accessors.

7.3.1.1.2 ObjectService
supertype: Service; subtypes: none

In the Java design, object services will map to Java class

methods, static methods for class based services.

In EJB, the class based services will be promoted to the

domain level, but with only package visibility. Instance based

services will remain with the entity bean or with its

corresponding session bean.

Actually, class based services aren’t visible outside of the

domain, and can therefor be implemented within the second

inner layer of the EJB interface design (the implementation

layer).

7.3.1.2 State
supertype: Action; subtypes: none

In the Java design, state actions are implemented as instance based

methods invoked by the state machine mechanisms.

State actions in EJB will be mapped to an adjunct class for entity beans.

The adjunct class separates the business logic from the bean accessors.

7.3.1.3 Initialization Hooks

 14

Initialization hooks are pieces of code that are configured (generated) to

run automatically on startup. The hooks can be defined at the system or

domain levels.

For stateless session beans, all defined initialization hooks must be run

before the service executes.

7.3.2 Event
supertype: none; subtypes: none

Events are transient within a domain service invocation. All events will carry

with them the reference to the PfdTask on which they are queued, so that

subsequent event generates resulting from handling the event will be placed on

the same queue.

Events destined for active objects that are also entity beans must carry the

destination instance reference as an EJBHandle rather than a Java pointer. This

is because the EJB container may choose to passivate (remove from memory) the

target entity bean between generation and reception of the event.

7.3.3 Generate
supertype: EventAccessor; subtypes: none; an invocation of an event generate

accessor

Event generation places events on the event queue within the context of a

specific Task, shared among all the beans involved in a particular domain

service. See the section on MBSE Semantics, subsection Task for more

information on this.

7.3.4 State Transition Table
The table describes the state machine in terms of current state, incoming event,

and next state.

This table will be stored statically in the active object itself. In the case of entity

beans, the transition table will be stored in the same class as the state actions

themselves.

7.3.5 Output Parameters
Since Java passes everything by value, it is not possible to support output

parameters from services with native Java data types. Instead, a set of

lightweight carrier classes are defined to wrap the base Java types and allow

these classes to carry the output data back to the calling service. This restricts

calls to services with output parameters to be standalone calls, not part of a more

complex expression like an If condition.

In Java RMI and EJB, passing a carrier object will not be sufficient, as the

changes are not propagated back to the caller. The only recourse to this is to pass

the results in a wrapper class as the return value for the method in question. A

serializable return vector must be used to transport output parameters and return

values from server back to client.

A return vector of the service of java.util.Hashtable, using name-value pairs

within the hashtable as the output parameters, could be used. This return vector

will also carry the return value of the service and any service handles that were

invoked on the server and destined for the client. The advantage of this interface

is that it would be consistent across all client-server services, but the hashtable

interface and name-value pairings suffer from possible run-time mismatches in

naming if interfaces change.

 15

Alternatively, a serializable class could be generated to carry the return vector.

This is the current design plan. All output parameters would map to public

member variables, as would the return value. For realized domains, an interface

layer that simplifies the calling interface will be generated. See Realized

Interfaces for more information.

A superclass mechanism, PfdReturnVector is defined in the

SoftwareMechanisms. This is the superclass to all return vectors. It also carries

the set of service handles invoked on the server and bound for the client.

7.4 Action Language

7.4.1 AttributeSelection
supertype: Expression; subtypes: none; an expression that reads or writes an

attribute value

In both the Java and EJB designs, attribute reads and writes map to invocations

of the attribute’s get or set method.

7.4.2 Create
supertype: ObjectAccessor; subtypes: none; an invocation of an object create

accessor

In the Java design, create statement maps to the creation of a new in- memory

instance.

In EJB, the create statement of a class that is an entity bean maps to the

ejbCreate invocation that creates the instance in the underlying database.

7.4.3 CreateServiceHandle
supertype: Statement; subtypes: none; an invocation of this built-in service

The CREATE ServiceHandle AL statement in both Java and EJB maps to the

instantiation of a PfdServiceHandle, with the domain and service numbers filled

in, along with any parameters.

See the discussion in Mechanisms, Service Handles for more information.

7.4.4 Delete
supertype: ObjectAccessor; subtypes: none; an invocation of an object delete

accessor

In the Java design, delete statement maps to the removal of references to the in-

memory instance, resulting in its availability for garbage collection.

In EJB, the delete statement of a class that is an entity bean maps to the remove

invocation that deletes the instance in the underlying database.

7.4.5 Expression
supertype: none; subtypes: AttributeSelection, BinaryExpression, Constant,

EventAccessor, LocalVariable, ObjectAccessor, ParameterVariable,

RelationshipAccessor, ServiceInvocation, UnaryExpression; an invocation of a

function and/or something that returns/has a value (as an rvalue), or something

that can have it's value set (as an lvalue)

Expression subtypes are mapped into Java.

7.4.6 Instance Lookups - Find/Foreach
supertype: ObjectAccessor; subtypes: none; an invocation of an object find

accessor

 16

A lookup statement in MBSE may have two sources, a relationship navigation or

the class instances, and each source Find may be of two types, a find first/last

(FIND), find all (FOREACH), and each Find type may include an optional

Where clause for further limitations on the returned instances.

In the straight Java design, lookup statements map to searches on the in memory

relationship or instance lists. The instances are iteratively compared with the

Where clause.

In the EJB design, for entity beans, not all the class instances or related instances

may be in memory, so lookup must map to database searches, using the EJB as

an interface. Each type of lookup (class based find and relationship traversal)

referenced in the AL of the domain will have an interface in the Home interface

as well as the bean class.

 Custom FINDS can be implemented as separate methods and use SQL to access

the database directly. Matching entities must result in the return of a Collection

of Primary Key objects, which the container would translate to instances. If

required, we can map class based finds and association traversals directly to

SQL.

7.4.7 InvokeServiceHandle
supertype: Statement; subtypes: none; a statement that invokes a ServiceHandle

The CALL statement invokes a service handle. If the service referred to by the

handle resides in the same process, the handle is decoded and invoked. If the

target service resides on an EJB server, a session bean is obtained at the service

handle invoked. If the target service is invoked on the EJB server and resides on

the EJB client, the service handle is added to the return vector of the service for

transport back to the client.

See the discussion in Mechanisms, Service Handles for more information.

7.4.8 Link
supertype: RelationshipAccessor; subtypes: none; an invocation of a

relationship link accessor

In Java, a link results in bi-directional pointers set in the participating objects

(and in an associative object, if necessary).

In EJB, a link does the same thing, since both objects must be in memory to be

linked. However, for entity beans, the LINK also sets the formalizing database

attribute for the relationship. Links may also result in the creation of associative

objects in the database to support many to many relationships.

7.4.9 Navigation
supertype: RelationshipAccessor; subtypes: none; an invocation of a

relationship navigation accessor

In Java, relationship navigation, from within a FIND or FOREACH statement, is

taken from the pointer list within the class.

In EJB, for entity beans and relationships between entity beans, the navigation is

mapped to a find/lookup method in the Home interface and bean class to find the

associated instances from the database.

7.4.10 ServiceInvocation

 17

supertype: Expression; subtypes: none; the invocation of an object or domain

service

An invocation of a class method of the domain or UML class, in Java.

In EJB, maps to the appropriate invocation of a service, either in a session bean

or an entity bean. In some cases, it may need to create a new session bean before

invoking the method.

7.4.11 SubSuperNavigation
supertype: Expression; subtypes: none; a "cast" from a supertype to one of its

subtypes

Results in a simple downcast in both Java and EJB designs. NOTE: For EJB

1.1, this is done using the javax.rmi.PortableRemoteObject.narrow() method.

See O’Reilly pp 133-135 for exceptions.

7.4.12 Unlink
supertype: RelationshipAccessor; subtypes: none; an invocation of a

relationship unlink accessor

The reverse of LINK, in Java, it removes the bi-directional references between

the instances.

In EJB, it also removes the formalizing attributes from the database table.

Unlink will also remove any associative objects in the database.

7.5 MBSE Semantics

7.5.1 Timers
A single timer thread will be shared among all the session beans implementing

the domain interfaces. The timer thread will accept timer settings and respond to

the requesting Task when the timer has expired. This thread should be started

outside the EJB environment, but shareable within it.

7.5.2 Instance Lists
An instance list is the set of all instances of a particular class. In this design, the

set is only completely visible within the relational database that supports the

system. As such, there are really 2 instance lists – the complete set in the

database, and the partial set in memory. It is assumed that the EJB container

takes care of insuring that an instance (entity bean) is not in memory twice.

Transient class instances are held completely in memory, but should not overlap

between tasks or instances of the domain.

No in-memory instance lists are kept for entity beans, since the database keeps

the list.

In memory lists for non-entity beans must be kept on a thread-by thread basis.

The instance list must then be part of the thread’s MBSE execution context.

7.5.3 Service Handles
EJB does not provide any support for asynchronous communication between two

entities. The model is strictly client server, where all processing is synchronous

and controlled by the client, invoking the server and blocking until processing is

complete and the results returned. Thus, the concept of service handles does not

map well to the communication between domains on the client and domains on

the server.

 18

Service handles invoked on the EJB server that are services of the client will be

serialized across the network, carried in the return vector for the service. Once

they arrive at the client, they are deserialized and invoked. Note that this limits a

server thread from communicating with other clients, only the client that started

the particular thread.

Domain services of the client will be wrapped in an interface class that will

create the service handle and insert it into the return vector. As part of the

return vector from the service, a set of zero or more service handles will be

returned. The service handles will be serialized to cross the wire. Any service

handles bound for the client will be returned in the return vector, unpacked, and

invoked before the method returns on the client. The service would also package

up the return values to return them to the client.

Between domains on the same side of the client-server boundary, the mapping is

straightforward. Either the service handle is decoded and invoked directly or a

session bean is created and then the service invoked.

7.5.4 Task
The task consists of the MBSE event loop and the interface to timers. Within the

context of the EJB design, there could be many tasks running at the same time,

coordinated through the EJB container and the underlying relational database.

Each domain session bean service accepts parameters, does processing, and, if it

generates an event, creates a task, deposits the event, and spins the event loop.

The event loop executes until there are no events left to process and there are no

timers active.

Since there are multiple tasks running at the same time, the objects must know

what task to place new events into. There is no global area or global key that

can be used to store the PfdTask reference, so it must be passed around during

processing. The PfdTask reference is included with each event, so the receiving

states will know what PfdTask to enqueue the next event on. Any services that

can generate an event will have a PfdTask added to the interface. Session bean

interfaces do not expose the PfdTask, but include their PfdTask in calls to

domain implementation services.

We may need to add the PfdTask to all services, since a service may call another

service that may generate an event. Or, the whole tree of processing for a

service may need to be explored during translation.

7.6 Java Specific Issues

7.6.1 Exceptions
Exception handling is not part of the MBSE semantics. Java exceptions are not

thrown or caught by the mechanisms or any of the design templates.

7.7 EJB Specific Issues

7.7.1 Loopbacks
In EJB, the container manages all the resources for the application, memory,

threading, transactions, etc. As a result, this places some constraints on the

application. One of these constraints prohibits loopbacks in the EJB processing.

Loopbacks are when instance A calls a service of instance B, which then calls

another service of instance A. Loopback actions are not encouraged, as they

damage the threading and synchronization model of the EJB container. Settings

 19

on the bean deployment can allow loopbacks, but this removes much of the

protection EJB provides.

To avoid loopbacks, the domain API is separated into 2 levels. Clients of the

EJB server, mainly the user interface domains, use the Session Bean interface.

The SessionBean provides the context, threading, and transactions for the

operations. The second level is the actual domain implementation.

The SessionBean simply invokes the domain implementation level, then executes

the PfdTask event loop. When the event loop is complete, it packages the return

vector and passes it back to the client.

All processing within the domain uses the second level domain interface,

avoiding the session bean loopback problems within the domain, If multiple

session beans are used, then they should be stateless and each create a new

session bean to converse with the other domains to avoid loopbacks.

Initialization

Invoke Service

Process Event Loop

Package Return Vector

Execute domain

SessionBean

Layer

Implementation

Layer

Initial Invocation

Subsequent Calls

C
lie
n
t

In
v
o
c
a
tio
n

7.7.2 Exceptions
Exception handling is not part of the MBSE semantics. No application

exceptions are not thrown or caught by the mechanisms or any of the design

templates. EJB exceptions are caught and rethrown as required by the EJB

specification.

7.7.3 Transactions

 20

The EJB container and server provide distributed transaction context for the

application. The EJB container provides a set of properties on EJB classes and

methods that can be used to control and optimize access to the database while

providing enough protection to insure that data remains consistent. Transaction

membership and isolation control are the properties that can be set. The level of

support for these varies between vendors and must be investigated for TopLink

and Oracle.

These EJB properties are set in the deployment descriptor for the bean. A set of

properties can be captured in the MBSE models that correspond to the EJB

properties. The deployment descriptor can be generated from these.

We assume that helper classes – non EJB classes called from a bean - carry

transaction processing along, and that the transaction will propagate to other

beans called by the helper classes as per the EJB transaction propagation rules

and settings.

Deadlocks are detected by the EJB container or the underlying database when

tested with the BEA WebLogic server and the Cloudscape database. In a

deadlock situation, one of the session clients will time out, causing the server to

roll back any pending transactions.

For more information on transactions and EJB, see chapter 8 of Enterprise

JavaBeans.

7.8 Realized Interfaces
The interface between client and service in mapping MBSE to EJB gets a bit complicated

with service handles and output parameters, neither of which are directly supported by

EJB. This is not a problem for analyzed domains, since the code can be generated to deal

with that. With realized domains, such as the user interface, it becomes more of a

problem. To ease the realized to analyzed interface across the EJB client-server

boundary, a simplified wrapper class around the session bean will be provided.

The adapter class will have the same interface as the MBSE models, with carrier classes

for output parameters. The decoding of the return vector and invocation of any service

handles will be performed before the service returns.

8. MODELING CONVENTIONS AND RESTRICTIONS

Springboard expects your OOA models follow the conventions described in "Pathfinder Solutions

OOA/UML Modeling Guide".

Ideally, there are no conventions and restrictions placed on the analysis by the implementation or

design technology. Practically, there is a small amount of feedback, especially for a design that is

under development and intended to be used before it is complete. The following are conventions

and constraints on the model for use with the Java EJB design. This list will change as

development progresses.

- Use of output parameters from services in complex expressions. Service calls with output

parameters cannot be used within a compound expression, like an IF or WHILE statement.

- Loopback limitation on entity beans and session beans. Make as much inter-class communication

as possible asynchronous via events to avoid this.

