
©2005 by Pathfinder Solutions

How to Apply Model Driven
Architecture

Rigorous Software Development with Domain Modeling

By Peter Fontana

Version 2.2

January 5, 2005

PathMATE™ Series

Pathfinder Solutions LLC
33 Commercial Street, Suite 2

 Foxboro, MA 02035 USA

www.PathfinderMDA.com
508-543-7222

 ii

Table Of Contents

Preface...iv
Audience..iv
References ...iv

1. Introduction.. 1
Objectives.. 2
Analysis... 2
Design... 2
Development Steps ... 3

2. Requirements Definition ... 4
Entry Criteria.. 4
Requirements Changes .. 4
Exit Criteria.. 4

3. When to Analyze a Domain.. 5
Realized Code... 5
Legacy Code... 5
When MDA Isn’t Appropriate ... 5

4. Domain Separation.. 7
Domain Modeling Goals.. 7
Entry Criteria.. 7
The Domain Chart ... 8
Partition the System.. 9
Domain Model Validation ...12
Exit Criteria...12

5. Domain Development .. 13
Entry Criteria...13
Class Modeling...13
Scenario Modeling ..13
State and Service Modeling ...13
Action Modeling ...14
Dynamic Verification...14
Exit Criteria...15
Integration..15

 iii

6. Good Modeling Practice... 16
Managing the Process ...16
Object Blitz ...16
Information Modeling..17
Domain Requirements Matrix ...17
Bridge Definition ..18
Activity Sequencing ..18
Iterative Development ..18

Summary.. 19

A. Analysis With UML... 20
Domain Model ...20
Class Model ...21
Scenario Model ..22
State Model...23
Action Model..24
Contact Us ..24

B. Glossary .. 25

 iv

Preface

This paper explains how to apply the principles of Model Driven
Architecture (MDA) to the development of domain models. MDA is an
effective method for developing high performance, real-time, and
other types of challenging software applications. It applies disciplined,
object-oriented analysis and pattern-based transformational design to
create systems that comply with the Object Management Group’s
standards.

Audience

The discussion is addressed to individuals who want to use Model
Driven Architecture to develop rigorous and complete domain models.
The paper is written for practitioners in several areas of responsibility,
including systems analysts, design engineers, software developers,
and project managers.

References

The Unified Modeling Language User Guide, Grady Booch, James
Rumbaugh, and Ivar Jacobson, Addison Wesley, 1999 (ISBN 0-201-
57168-4).

UML Distilled, Martin Fowler, Addison Wesley, 1997 (ISBN 0-201-
32563-2).

"UML Summary Version 1.1," Object Management Group, Inc., 1997
(available at www.omg.org).

“Accelerating Embedded Systems Development with Model Driven
Architecture,” Carolyn Duby, Pathfinder Solutions, 2003 (available at
www.PathfinderMDA.com.

How to Apply MDA

1

1. Introduction

Model Driven Architecture (MDA) differs from traditional coding
practices in two important ways:

• Separation of analysis from design, and the transformation of
analysis through design into implementation.

• Partitioning of the application at the top level into separate logical
components – domains – based solely on subject matter.

Figure 1 illustrates the critical separation of analysis from design, and
the priority of fully analyzed domain models in the entire software
development process.

Figure 1. Separation of Analysis and Design in MDA

Design

BuildTransformation

Analysis

Execution-Specific
Requirements

Application-Specific
Requirements

Implementation libraries

Realized code

Deliverable System

Base MechanismsDesign PoliciesDomain models

Implementation
of models

Application-specific and
capacity requirements

How to Apply MDA

2

Objectives

MDA improves the software development process through rigorous and
complete analysis. The analysis required for domain modeling helps
MDA practitioners realize the benefits of disciplined software
engineering:

• Apply model based software engineering in a consistent manner,
leading to higher quality models and deliverable software.

• Reduce the overall software engineering development time.

• Position the developed software to readily respond to future
product requirements.

• Decrease the effort to produce and maintain software engineering
documentation.

• Improve control and predictability in the software development
process.

Analysis

Analysis defines what the system needs to do, but not how the system
will do it. Consequently analysis produces models that are platform
independent. Application-specific and virtually free of implementation
details, analysis in MDA is rigorous and complete. The analysis is
executable, and therefore verifiable through execution.

Design

Design is a strategy for mapping analysis to implementation. Because
of the rigor and completeness of MDA analysis, design is virtually free
of application-specific elements, and instead focuses exclusively on
execution-specific requirements. The primary elements of an MDA
design include a policy document defining the overall design strategy,
a set of foundation base mechanisms, and a set of code templates. A
transformation tool uses the design-specific code templates to
generate complete, deliverable code from the application-specific
models. This transformation process supports:

• Higher software quality through a uniformly applied design

• Elimination of hand-coding errors

• Increased application performance through uniform and
configurable design optimizations

• Reduced integration and debugging effort through the
configurable injection of object-level instrumentation and debug
support

How to Apply MDA

3

Development Steps

The overall software development process is broken into four major
activities:

• Domain Separation - Partition the entire system at the highest
level into domains of separate subject matter.

• Domain Development - Model each analyzed domain with class,
scenario, state, and action models. Refine the models through
iterative builds.

• Design - Develop a strategy for mapping analysis to an
implementation and for assembling system components. Design
development and preliminary validation is parallel to and
independent from the analysis conducted during Domain
Development and is often available commercially.

• Integration - Assemble all system components and verify that
they work together using a controlled set of iterative development
cycles.

This paper concentrates on the first half of this process: domain
partitioning, and the domain development that results in well
articulated models.

How to Apply MDA

4

2. Requirements Definition

Embedded MDA requires attention to detail even at the level of
information modeling. Software organizations that use MDA exemplify
the need for detailed, consistent, and firm definition of requirements
earlier in the development process than with less formal approaches.
This rigor is healthy, since poorly drawn requirements translate into an
unhappy project, and early detection leads to less painful cures. No
approach alleviates the need for solid requirements – some just hide
the problem longer.

The definition process results in requirements that are:

• Broken down to the atomic level.

• Sufficiently detailed to support information modeling.

• Sufficiently general to bound the problem, but do not specify
solutions.

• Traceable to the product concept document.

Entry Criteria

An approved product concept document must be available before
system-level detailed requirements can be started in earnest.

Requirements Changes

Changes in requirements after a set freeze date are likely, and any
process that addresses actual software engineering must take that
possibility into account. Even so, developers should strive to limit the
scope of, or defer such changes. Changes of scope always have a
negative impact on schedule, cost, and quality, and this impact
reaches even beyond the current release. To deal productively with
requirements changes:

• Firmly identify baseline requirements versions

• Document all changes, and accept no changes without a diligent
impact assessment.

• For all official requirements changes, accept them in an official
requirements review, including a re-release of the software
schedule.

• Requirements defects are a manifestation of our humanness. Let
project managers be conscientious about requirements bugs, just
as developers are conscientious about software bugs.

Exit Criteria

Once the system-level requirements document is approved, it’s time to
stop this work – until a requirements change is imposed.

How to Apply MDA

5

3. When to Analyze a Domain

Domain analysis is a very effective, general purpose approach for
developing software. Therefore use analysis for any domain where you
can readily imagine two or more objects to form a sound basis for
understanding the subject matter and the problem.

Realized Code

In cases where an existing package is used, and only minor or no
changes are required, conceptually allocate realized code into separate
subject matters. Then construct bridges to tie the realized domains to
the analyzed ones. Occasionally, it may be necessary to create an
analyzed interface domain to provide the realized capabilities at a level
and in a form compatible with the rest of the system.

Legacy Code

Often a block of existing code must be changed substantially to qualify
it for reuse. A common inclination, especially among managers and
developers intimately familiar with this code, is to expect that some
economy will be realized by trying to save big pieces of it, then just
rearrange things. This inclination is a false hope. Any significant
restructuring of an existing system is most economically achieved by
laying a sound foundation in analysis from the outset.

Think of the implementation layer or code in a system as a concrete
casting. A bit of grinding here and there is fine from release to release.
However any significant restructuring of this layer fundamentally
weakens the overall structure of the system. The mold needs to be
changed, and a new piece cast. Consider the analysis of a domain to
be the mold, and the process of transforming models into code as
casting. The mold is what’s important – casting is relatively cheap.

Don’t run up costs and place quality at risk by going from analysis or
design concepts to code in ad-hoc ways. Or were you planning not to
design your major changes at all…? Lesson: treat old code like old
underwear – if it starts to wear out or need alterations, just chuck it.

When MDA Isn’t Appropriate

There are many cases where packages or environments are available
that provide very specific and effective support to develop code for
certain specialized domains. An example of this is Microsoft’s Visual
Workbench. This is a Rapid Application Development environment
supporting the quick generation of GUI-specific code. There are many
examples of these environments, ranging from database and GUI
realms to specialized numeric algorithm support.

Another case where a domain may not use analysis for new code is
when the project’s design templates will not provide a satisfactory
implementation layer. This could be due to space or time performance
requirements, or other issues. The first response a project should
make to this condition is to attempt to adjust the design, or try a

How to Apply MDA

6

different transformation approach for this domain. For example, not all
domains in a system need to use queued asynchronous events. Some
domains may not even have active objects – domain and object
services could do all that is needed. In some cases, however, analysis
is simply not the most effective way to solve a problem.

How to Apply MDA

7

4. Domain Separation

Domain modeling is the most powerful of all MDA elements. It is also
the least mature and least covered in terms of published papers and
texts. Proper separation of subject matter supports powerful and
simple constructs within domains, minimizes bridge complexity, and
provides the only technically sound basis of significant reuse in the
software industry.

One of the first tasks in domain modeling is to identify the boundaries
of the system under construction. That can be an easy task when you
are building a simple system with one application, and do not expect
significant growth across releases. It can be somewhat more difficult
when your system involves many applications on many processors,
with significant increases in system complexity across releases. To
bound a complex system, adopt a single, large system perspective,
and take it to as high a level as is practical. That is, focus on one
system, not necessarily on one application or device. This practice
contrasts with other partitioning approaches that might bound systems
based on processor or executable boundaries.

The benefits of making the system larger instead of smaller come from
the ability to place all elements of the problem into a single conceptual
space and exercise the relationships between them. On the
constraining side, the upper limit on system size will primarily be
bounded by the abilities and authority of the system architect – the
system cannot extend beyond what this person can understand and
control, or at least influence.

Domain Modeling Goals

Keep these goals in mind as you and your team embark on a domain
modeling effort:

• Identify the boundaries of the system under construction.

• Identify the separate subject matters in the system.

• Partition the system into manageable components.

• Identify which components you will analyze, purchase, hand code
or otherwise generate.

• Establish top down flow of requirements from abstract, executive
domains to concrete, server domains.

Entry Criteria

Start domain modeling if an approved product concept document is
available. This document must contain sufficient detail to have
illuminated the major subject matter areas in the system. If more
system-level requirements work will likely uncover substantial system
structure not otherwise apparent, complete the bulk of that work
before you undertake domain modeling.

How to Apply MDA

8

The Domain Chart

The domain chart is a diagram showing all software components in the
system separated into domains. These domains are directionally
connected with bridges showing the flow of requirements from the
higher level domains to subordinates that provide required lower-level
services. The domain model is a domain chart with descriptions for all
domains and bridges.

The domain chart for a system represents the capabilities of the target
system to be delivered in a major product release cycle. Although the
domain chart is complete very early in the life cycle for the release,
the models within the domains mature with each step of integration.
Early in the iterative builds for a release, some domains may not be
complete, but at the end of the release, all abstracted domains should
be mature. As the project moves from one release to the next, the
domain model is modified to consider new subject matter areas as
necessary.

Roles of the Domain Chart

The domain chart can seem very familiar to people used to dealing
with system-wide issues and high-level design. This typically leads
some people to derive unintended meaning from a domain chart. One
of the significant benefits of MDA is that the definition of the method
itself is rigorous. That rigor extends to the definition of the domain
chart. A domain chart tells us:

• The population of domains in the system.

• How domains are related through the hierarchical flow of
requirements.

The domain chart does not specify:

• Allocation of software to tasks, processes, processors, or
networks.

• Run-time flow of data or control.

Group Portrait

In the case where a development organization is formed to support
one consistent family of closely related products, a proper domain
chart is a self portrait of the development organization itself. This
chart reflects the relationships between all significant software efforts
underway or planned in the near term. In this case, the application
domain should reflect the identity of this group – what constitutes the
essence of the group.

Describe Short and Long Term Views

Domain modeling is strategic in nature. It is the only area where
releases beyond the current effort are considered. If possible, keep
two explicit versions of the domain chart. The first is a master plan
domain model that reflects the organization’s best perspective on what
the system will look like in the medium time frame – usually one full
release cycle forward. Once the initial domain model work is done, do

How to Apply MDA

9

a second domain model as a subset of the master to reflect the
specific composition of the system in the first release. Once the
organization is ready to start work on the second release, the master
is revisited, updated as necessary, and a release-specific domain
model is again carved out - to define the next version of the system.

Partition the System

The separation of a system into discrete subject matter domains is the
most powerful technique in MDA. Proper separation of subject matter
supports powerful and simple constructs within domains, minimizes
the complexity of interaction between domains, and facilitates large-
scale reuse. The domain is a component of the system, the unit of
reuse.

The origins of a domain fall into two categories:

• Methodologically defensible universes of software, with purity of
subject matter, broken out by careful study and conceptual
analysis.

• Clumps of legacy code, off-the-shelf software and other realized
code, usually hammered into a set of realized domains.

Separation of Subject Matter

Think of domains as conceptual universes – defined by the domain
description or mission statement. When a domain contains a particular
capability or abstraction, or if you allocate any other item defined by
its subject matter to a domain, it cannot appear in any other domain.

This separation does not prevent the manifestation of elements of a
server domain in a client through the presence of some sort of a
handle or magic cookie. The handle must be atomic in the client, and
the client must not know any more about the handle than what is
published in the server bridge.

If a subset of abstractions appears in one domain but seems to be
needed in another, remove these abstractions and allocate them to a
to a common server. See Delegate to Server Domains for more
explanation.

Realized domains representing yet-to-be developed code are subject
to the same rules as MDA domains regarding purity of subject matter.
They should not implement abstractions present in other domains, and
the domain should stand consistent by itself.

When you create domains for packages or modules of existing code,
you need not map all the capabilities of one package into a single
domain. For instance, the MFC as delivered with Microsoft’s Visual C++
can populate several realized domains: GUI Foundation, DB Engine,
File System Utilities, Task and Process Controls.

How to Apply MDA

10

What Is the Application Domain?

The application domain contains the highest level abstractions in the
system. These should be the identity concepts of the system, and
most should seem familiar to anyone knowledgeable about the
product. The application domain also bears the burden of most of the
system-level requirements.

Some practitioners may place half or more of the total object
population in the application domain. For a simple system, this may be
workable, but for a system of any real complexity, do not allow that to
happen. Any domain should be kept to a manageable size. Experience
shows over eighty objects is probably too much complexity in a single
domain. The key to managing domain complexity is also the secret of
a successful executive: delegation. Delegate to Server Domains
explains how to break out pieces of a client and move them to a
server.

Levels of Abstraction

The level of conceptual abstraction in the top level domains is the
greatest, with more detailed and mechanical concepts located toward
the bottom of the domain hierarchy. This arrangement works well
when system requirements flow downward, and when a client domain
delegates tasks in the same direction.

Domain Names

Maintaining a high degree of conceptual purity in a domain keeps the
concepts more simple and powerful. This pursuit of purity can be a
difficult, continuous struggle, and every reasonable aid should be
employed to keep things in order. An effective name for a domain can
do a lot to enforce the proper level of abstraction and conceptual
purity. While a well-crafted domain description helps identify a
domain’s conceptual space during domain model development, the
name carries most of the burden of communication. For instance, don’t
call your top-level domain Application. It’s a waste of space.

Good application domain names, however, can be difficult to arrive at.
Frequently, the first name for an application domain may come from
the most prominent visible aspect of a product, or the product name
itself. For instance, an application domain for an air traffic control
radar system might be called ATCRadar, but a more complete analysis
may show the highest-level domain is more appropriately termed
AircraftTrafficManagement, with a RadarTracking server domain.

When you name a server domain, try not to select a name that only
identifies its capabilities from the client’s perspective. Instead convey
the server’s capabilities without restricting how they are used. This
practice prevents the client’s subject matter from leaking down into
the server. For instance, a VehicleSpeedControl domain might rely on
a server named SpeedDetectorMonitoring. We may find more clients
for these operations if we name the server
AsynchronousIncidentBuffering. That keeps the server’s subject matter
free from the specifics of the type of device it serves.

How to Apply MDA

11

Evaluate the Domain Definition

The first test of a domain is to read the domain description out loud. Is
it defensible? Does it meet the requirements that the system and all of
the domain’s clients impose on it? Does it provide usable boundaries
on the constituent abstractions, including a conceptual lower bound?
Can you construct a core domain mission statement without including
vocabulary or concepts from other domains? (Note that it’s useful to
augment a core mission statement with system-level descriptions and
examples, drawing on perspectives from clients and other domains for
clarification if necessary.)

If a domain definition cannot be readily written, perhaps additional
effort is needed to identify the major objects needed in the domain
(see Object Blitz in Good Modeling Practice). You needn’t identify
details such as attributes or even relationships – simply populate the
domain core. This conceptual exercise may provide a context that is
sufficiently concrete to define a domain.

A conceptual exercise that tests the integrity of a domain transplants it
to another system. For a high level domain, envision how well the
integrity of the subject matter survives the replacement of all server
domains with different but equivalent substitutes. For instance, how
well does the application domain survive if you change the operating
system, the user interface, the database, or the underlying hardware?
For a server domain, envision its reuse in a different system. Can it
satisfy similar requirements imposed from a different application?

Delegate to Server Domains

The relationship between a client and a server should mirror that
between a supervisor and a skilled worker. The supervisor needs to
know something about what the worker is doing, but does not need to
know everything. As long as the worker does the job correctly and on
time, the supervisor does not care how it happens.

Domain analysis may show a need to push capabilities to a lower level
of abstraction than the current domain. This realization presents an
opportunity to delegate these capabilities to a server domain. Issues of
scope often influence the decision to create another domain. If the
subordinate capabilities represent a sufficiently large effort, the
overhead in creating and managing another domain is justified. The
size and manageability of the current domain may also affect such a
decision.

Analysis may also show that a set of abstractions seems loosely
connected to the rest of the domain, but quite tightly coupled within
itself. This constellation of sub-subject matter may be an essential
quality of the domain, inherent in the problem space that the domain
addresses. Or it may indicate an altogether separate constellation
within the domain. If you see that this sub-subject matter is already
allocated to another domain, then move it there. If another domain is
not a likely choice as a new home, then decide whether or not a new
server domain makes sense.

How to Apply MDA

12

To decide if it is appropriate to move a sub-subject matter cluster to a
new domain, determine whether:

• The cluster to be moved to the server can stand by itself as a
coherent set of capabilities, not dependent on its former context.

• The set of abstractions represented by the cluster is at a lower
level than the client.

• The client can easily be changed to eliminate any former
dependence on the cluster.

The last case where delegation is appropriate is when two or more
domains appear to have a need for a common set of abstractions.
Then it is often desirable to move these objects and their relationships
to a common server domain. Determine if the needs of each of the
potential clients are sufficiently similar to allow a single, consistent set
of requirements for the server. After you identify the common subject
matter in each client, factor it out and move it to the server.

Domain Model Validation

Once the initial domain model is complete, you can take a number of
steps to validate your subject matter separation. While the initial
analysis may appear rather subjective, the validation steps are more
objective. Their early and iterative application steadies the domain
modeling process. The evaluation process includes an assessment of
the system overall, and an assessment of each domain in the following
areas:

• Conceptual clarity

• Level of abstraction

• Subject matter purity

• Reusability

• Analyze or realize

• Scenario testing

In addition to the above modeling-specific evaluation criteria, you can
evaluate subject matter partitioning by assessing the degree of
coupling and cohesion in the model. Coupling is the amount of
undesirable interaction between domains and their constituent
elements – something to be reduced. Cohesion is the degree to which
elements within a single domain rely on each other and belong
together – something to be increased. Low coupling between things in
different domains and high cohesion within a domain are both good
qualities in a domain model.

Exit Criteria

While the domain model must be regarded as a living document,
consider it essentially complete when the authoring team decides the
diagram and descriptions are complete and consistent, and after the
team resolves all major review items.

How to Apply MDA

13

5. Domain Development

System level detailed requirements are in place, and the domains you
have defined are ready for development. Start with the top level,
application domain, and go through these phases of development:

• Class modeling

• Scenario modeling

• State modeling

• Action modeling

• Dynamic verification

• Software system integration

• Hardware system integration

Entry Criteria

Begin development of a domain when the system requirements
specification is approved, and state modeling is completed in all of its
client domains.

Class Modeling

The development of each domain begins by identifying the classes that
populate the domain. Descriptive attributes are added to each class,
and classes are related with associations and inheritance hierarchies.
Classes define the domain from the perspective of data.

Scenario Modeling

Once the data abstractions have been constructed, a strategy for
inter-class communication is developed on a scenario basis. Class
instance creation and deletion, events among class instances, and
other significant activity between the domain's bridge interface,
classes, and server domains are laid out in a sequential manner
following a limited set of key scenarios.

The scenario models establish a foundation for state modeling.
Carefully drawn scenario models effectively increase efficiency and
quality during later phases of the development process.

State and Service Modeling

The strategy developed in the scenario modeling phase is broken out
among the states of active classes, class-based services or methods,
and domain-based services. Events are defined, and detailed behavior
for all scenarios is defined. The actions for each state and service are
summarized.

How to Apply MDA

14

Initially, lay out positive processing steps in the state models, and
review those steps with their corresponding scenarios. Add error
processing and other unusual cases in a subsequent pass. Lastly,
complete state transition tables to account for ignored or deferred
events, and to help structure another form of error analysis – handling
untimely events. Then go back and update the scenario models to
reflect the state models. The scenario models will be valuable during
integration.

Complete all state modeling in a domain before doing any process
modeling in that domain – this will help avoid rework. Once the state
modeling is complete for a domain, server domains can be started.

Action Modeling

The complete and executable specification of each state action, class-
based service, and domain-based service is expressed at the level of
analysis in the action language. This textual language supports a
convenient, complete set of analysis processing primitives, and
enforces the separation of analysis from implementation. The
semantics of the action language have been standardized by the OMG
as a part of the UML.

Action modeling is an analysis step, and the action language should
only deal in the abstractions of its domain. Leave manipulations of
other domains in those domains. Perform low-level operations, those
below the level of analysis, in the Software Mechanisms domain.

Dynamic Verification

During dynamic verification, the models are executed to verify their
correctness. The analysis is translated into code that runs in an
instrumented executable. The patterns of communication laid down
during Scenario Modeling are followed through each scenario. More
particularly, the flow of control within the domain and the run-time
values of analysis data elements are examined and verified. During
verification, check the run-time values of these domain elements:

• Attributes

• Event parameters

• Service parameters

• Variables

Employ your development environment’s static model analyzer
throughout the domain modeling process to ensure correct MDA
syntax and consistency. Use dynamic verification when the analysis is
complete to verify the correctness of your behavior analysis. This is a
technique in which the actual behavior of your analysis is executed –
not simulated as it is commonly referred to – in your development
environment.

How to Apply MDA

15

Dynamic verification is a form of testing – likened to unit testing. As in
any verification process, follow these steps:

• Use the requirements document to define the desired behavior of
the system.

• Devise a test plan to define and structure the execution of
scenarios.

• Run the tests.

• Evaluate the output.

• Determine the outcome of the tests and record the test results.

Use the domain requirements matrix and its background documents to
define the system’s expected behavior. Scenarios from the scenario
models also provide a good basis for the dynamic verification.
Compare your inventory of all pertinent scenarios with the domain
requirements matrix to ensure sufficient test coverage.

Exit Criteria

Development of a domain is complete when the dynamic verification
tests for all scenarios are passed.

Now the domain is ready for Software Integration.

Integration

Integration begins when the domains are verified and any realized
domains are complete. Submissions from domain developers are
assembled in a careful, stepwise process.

The software integration phase focuses on the system elements that
you can run or simulate on the development platform. Assemble the
components of the system and verify as much as you can without
running on the target hardware. This effort is focused to illuminate all
problems possible in the relative luxury of the development
environment.

The hardware integration phase takes the system to the target
platform, where the final, hardware-specific verification is done. The
flexibility of code templates facilitates the injection of select
instrumentation and execution control code into the target system,
supporting object-level debugging there.

The overall integration cycle from dynamic verification through
software integration and finally onto the target platform is repeated in
its entirety for each iterative build in the release.

How to Apply MDA

16

6. Good Modeling Practice

The entire process of domain analysis and development requires
patience. Team members must organize many interlocking pieces of
information. The advice in this section makes this process more
efficient and more accurate.

Managing the Process

Given all of the above, it is clear that project leadership must consider
the domain model to be an area where the most rigorous development
process must be applied, including:

• Appoint a single leader for the domain model, typically the overall
project technical leader, with responsibility and authority to make
decisions - even in the absence of consensus.

• Identify a core subset of the project technical staff – typically no
more than four people – to participate in domain modeling.

• Write down identify the goals of the effort.

• Provide a bounded period of two weeks or less to ensure focus
and retain momentum.

• Apply the highest degree of professionalism, to ensure the proper
balance of discussion of alternatives and cooperative forward
motion.

When the domain model is complete, make updates as necessary, and
only after a reasonable review process.

Object Blitz

The purpose of the object blitz at the beginning of the development
process is to gain an understanding of the scope of effort in a domain.
Restrict blitz activities to a single session, one to two hours per domain
at the most. Brainstorm the objects that might belong in the domain –
do not go into descriptions, relationships or attributes. Once a blitz
identifies possible objects for a domain, examine the list to eliminate
all those that are not valid objects. Quickly eliminate all objects that
meet one or another of these criteria:

• No definable attributes or operations.

• Objects that belong in another domain.

• The object supports no requirements, or supports requirements
not in the current release.

Once you make the first level cut, the number of remaining objects is
the blitz count.

How to Apply MDA

17

Information Modeling

The information model is the highest-level work product of a domain,
and as such should tell the story of the domain. Once the domain
mission has been reviewed, the natural abstractions of the domain
should be captured. Do not immediately fret over mechanical issues,
response time optimization, and other distracting concerns. Make your
first trip around the landscape at a conceptually pure level.

Once you feel the population of the domain is reasonably complete and
consistent from the first pass, quickly cobble together a couple of
rough scenario outlines, just enough to exercise the new objects.
Informally walk through these scenarios and review the information
model in a more critical light. Review each bridge service into the
domain and further refine the information model.

Don’t over polish the information model. Move on when things seem
reasonably complete, and the object, attribute and relationship
descriptions are accurate. Allow for changes from later modeling
phases – even substantial restructuring if necessary – so don’t wax the
bodywork yet.

As in all MDA phases, use defensible, accurate and concise names.
Take time to be sure descriptions convey what is necessary for an
external review, or for the busy and distracted developer who needs
context to understand the abstractions. Model to satisfy the
requirements of the immediate release, as structuring for future
development is cheating. Sometimes it can be a good cheat, but
sometimes our foresight is not as clear as we’d like.

Domain Requirements Matrix

The analysis of an individual domain is a rigorous process that is
driven by requirements allocated to the domain within the context of a
single iterative build. The domain requirements matrix is a table of
requirement references for a single domain in a single build. Use this
short document to:

• Provide a list of all system-level requirements that bear directly on
this domain.

• Identify and describe all bridges into the domain.

• Record all assumptions and issues identified during the analysis
phase.

Knowing the specific requirements that a domain must satisfy gives
the analyst a clear direction when creating models for the domain.
Think of the requirements matrix as the domain’s development
contract. The document should not, however, just duplicate
information found in other sources. It is a set of tables tailored to the
needs of the project, annotated with prose that identifies issues and
assumptions.

How to Apply MDA

18

Bridge Definition

A bridge ties one domain to another. Mechanically speaking, the
externally published domain services act as the functional interface to
a domain. Two factors determine the content of this interface:

• The system-level requirements that bear directly on the domain,
as listed in the domain requirements matrix.

• The set of services required by the domain’s clients, as outlined in
the client’s scenario and state models.

Define these bridge services before you begin information modeling, to
place a mechanical context on the requirements. The description of
each service outlines the service action at a high level, without
duplicating the detail of the service’s action model.

Activity Sequencing

The basic constraint for starting any domain is the detailed
understanding of all requirements and constraints that bear on that
domain. That means you must know the system-level requirements
that bear on the domain before you begin development.

You should also define all the bridge services imposed on a domain by
its clients. Typically, completing the state models for the clients serves
to flesh out all bridge service needs. If greater overlap is needed
between client and server domain development, you might use the
results of scenario modeling to establish server bridges. The risk for
overlapping client and server domain development is rework. You
make the call.

Iterative Development

To manage the complexity of analysis and integration, partition
development of a domain into several iterative builds. Each build
should span about three months. Distribute release functionality
evenly across builds, and test each build on the target hardware.

How to Apply MDA

19

Summary

Domain modeling is one of the most difficult parts of the MDA process
to manage properly. This is true for a number of reasons:

• It is the least mature of all the different elements of MDA.

• Far more than any other single aspect of MDA, domain modeling
has the highest strategic impact on your organization’s
effectiveness, productivity, and flexibility.

• It is the most subjective area of MDA to apply - the guidelines for
proper domain modeling are difficult to apply in a group setting,
requiring a high degree of professionalism, and an effective
leader.

• The domain model and the information models are so closely
interrelated: it is difficult to start a domain model without
information models, but you cannot write useful information
models without a well-defined domain model.

• Since domain model is the conceptual layer that grounds all
remaining analysis, changes in the model carry a potentially
significant rework impact. On the good side, it is extremely
difficult to work around a domain modeling problem of any real
significance.

Given these difficulties, why not separate system elements based on
other criteria? Because we have no generally applicable separation
schemes that are easier to apply, or that yield beneficial and
repeatable results. As demanding as domain modeling might be, it is
still much better than the alternatives.

How to Apply MDA

20

A. Analysis With UML

The full range of primitives in UML is quite wide. UML diagrams can be
created from a number of perspectives including Conceptual,
Specification, and Implementation. Analysis in MDA is performed from
the UML Conceptual perspective, and is expressed through the
following subset of UML.

Domain Model

System

The system is expressed through a domain chart where every software
requirement of the system is assigned to a component, or domain. A
Class Diagram with Packages and Dependencies represents the domain
chart. Please see Figure 2.

NetworkCommunication
(NCOM)

GraphicalUserInterface
(GUI)

SoftwareMechanisms
(SW)

BeamManagement
(BM)

OperatorInterface
(OI)

AirTrafficControl
(ATC)

AntennaControl
(ANTC)

AircraftTracking
(AT)

RadarTargeting
(RT)

Figure 2. Domain Chart Class Diagram

Domain

The domain is abstracted using the Package, capturing its name,
description, prefix, a list of domain-specific types, and a list of
services. Each service has a name, and (optionally) a set of
parameters. Each service parameter has a name, a data type, a
description, and an I/O mode. Please note the Package symbols in
Figure 2 - domains at a higher level of abstraction are shown nearer
the top.

Bridge

The bridge shows the flow of requirements from more abstract to
lower levels. Please note the Dependency arrows in Figure 2.

How to Apply MDA

21

Class Model

The class model is expressed with a Class Diagram. Please refer to
Figure 3.

Airline
(AL)

name
emergencyContact
normalContact

AircraftInFlight
(ACF)

altitude
latitude
longitude
priority

GateAssignment
(GAS)

timeAssigned
expectedReleaseTime

Aircraft
(AC)

tailNumber
type
fuelStatus

AirportZone
(AZ)

innerRange
outerRange
altitudeCap

Taxiway
(TW)

number
length
availabilityStatus

Gate
(GA)

number
terminal

TaxiingAircraft
(ACT)

gateAssignment

0..1 0..1

A5

assignee

destination

0..*

0..1
A3

traffic

location

1..*

1

A2

fleet owner

1

0..*

A1
location

traffic S4S4

Figure 3. Class Model

Class

The primary unit of abstraction is the Class. Each class abstracts and
describes the objects that inhabit the domain, capturing these objects
with its name, description, prefix, a list of attributes, and a list of
services. Each attribute has a name, a data type, and a description.
Each service has a name, an indication of whether the service is
instance-based or class-based, and (optionally) a set of parameters.
Each service parameter has a name, a data type, a description, and an
I/O mode. Please note the Class symbols in Figure 3.

Inheritance Relationship

A supertype Class abstracts the common attributes, relationships, and
behavior of its subtype Classes. This form of relationship is shown with
a set of Inheritance arrows, one for each subtype pointing to the
common supertype. All arrows pointing to the same supertype have
the same relationship identifier. Please note the S4 Generalization
arrows that relate the supertype Aircraft to its subtypes AircraftInFlight
and TaxiingAircraft.

Association

An Association arrow abstracts the binary relationship – an association
between two Classes, or with one Class to itself. The Association has a

How to Apply MDA

22

shorthand identifier (of the form "A<number>"), a description, and
participant information at each end. For each participant, there is a
role phrase, multiplicity (how many), and conditionality. Please note
the Association lines in Figure 3.

Associative Class

Sometimes a binary relationship has its own data characteristics that
are abstracted in an associative class, captured as a Class connected
to an Association arrow. Please note the GateAssignment Class
connected to Association R5 in Figure 3.

Scenario Model

The pattern of communication between services and state models
within a domain can be captured two different ways with UML™
diagrams. The Sequence Diagram is used to create a table of the
domains and objects in a scenario and sequentially list the events,
Class instance creations and deletions that occur on a scenario basis.
Please refer to Figure 4.

TaxiingAircraft AirlineAircraftTracking GateAssignmentAircraftInFlight

ACT:AssignTaxiway

ACT:GateAvailable

Create

AL:GateRequested

Create

Delete

AT:AircraftLanded

Figure 4. Sequence Diagram

Sometimes it is helpful to consider the class interactions for a scenario
in the context of a topological layout of the Classes for a domain, to
imply relative capabilities/intelligence and responsibilities. In this case
the Collaboration Diagram is used instead of the simple tabular
approach of the Sequence Diagram. These perspectives are
interchangeable, and many UML tools support automatic updates
between perspectives. Please refer to Figure 5.

How to Apply MDA

23

GateAssignment:Definition

AircraftTracking:Definition

TaxiingAircraft:DefinitionAircraftInFlight:Definition

Airline

2: Delete

4: ACT:AssignTaxiway
3: Create

5: AL:GateRequested

7: ACT:GateAvailable 6: Create

Figure 5. Collaboration Diagram

State Model

State dependent behavior of a class forms its lifecycle. The UML™ State
Model is used to capture these lifecycles in terms of states, events,
transitions, superstates, and substates. Please refer to Figure 6.

TaxiingOut

link to allocated taxiway
unlink gate
request takeoff clearance

HeadingToGate

link with allocated gate
proceed to gate

TaxiingIn

link to assigned taxiway
generate AL:GateRequested

TakingOff

unlink taxiway
convert self to AircraftInFlight

ParkedAtGate

unlink taxiway
initiate arrival servicing

Landed

ACT:TakeoffClearanceGranted(runway)

ACT:ReadyToDepart(taxiway)

ACT:AssignTaxiway(taxiway)

ACT:GateAvailable(gate)

ACT:ArrivedAtGate()

Figure 6. State Diagram

How to Apply MDA

24

State

The State symbol is used to abstract a single stage in the lifecycle of
the object. Please refer to the State symbols in Figure 6.

Superstate/Substate

To clarify diagrams where many states have a common set of
transitions to other states, a superstate can be used to show the
commonality among that group of states. The superstate can not have
any activity associated with it. Substates refer to states within a
superstate.

Event

Events are defined on the State Diagram and are associated with
Transitions from one State to another. Each event has a prefix that
matches the owning class, a name, and (optionally) a set of
parameters. Each event parameter has a name, a data type, and a
description. Please refer to the Events and their associated Transition
arrows in figure 6.

Action Model

The Action Model is a detailed specification of a procedure – a state
action or service action - at the level of analysis. Action Language is
used to abstract analysis-level processing primitives, and enforce the
separation of analysis from implementation. The Action Language
statements for an action are captured in a textual container associated
with the action. The Action Model below captures the detailed behavior
for the TaxiingOut state in Figure 6 above.

// State action for ACT.TaxiingOut
Ref<Gate> my_gate;

// link to allocated taxiway
LINK this A3 taxiway;
// unlink gate
my_gate = Find this->A5;
UNLINK this A5 my_gate;
this.gateAssignment = NO_GATE;
// request takeoff clearance
ATC:RequestTakeoffClearance (this.tailNumber)

Contact Us

For more information on Model Driven Architecture, please call
Pathfinder Solutions at 508-543-7222, email us at
info@pathfindermda.com, or visit us at www.pathfindermda.com.

How to Apply MDA

25

B. Glossary

Analysis The process of developing UML Analysis Models and their Dynamic
Verification, for each analyzed domain in the system. This typically is
conducted largely in parallel with Design.

Analysis Models A complete set of UML Analysis, including the Domain Model (for the
entire system), and for each analyzed domain an Class Model,
Scenario Models, State Models, and Action Models

Application-Specific
Requirements

All requirements that define the system under development in terms of
features, specific capabilities, and all aspects of system operation and
behavior that are not exclusively Execution-Specific

Base Mechanisms The set of language-specific base and utility structures that provide the
operating infrastructure of the system, including event queuing and
dispatch, inter-task and inter-process communication, basic analysis
operation support, memory management, and general software
primitives such as lists and strings.

Build The process of compiling and linking the translated implementation
code, realized code, and implementation libraries into the Deliverable
System

Deliverable System The set of executable elements that constitute the software product to
be verified and delivered

Design The process of defining and deploying a strategy for deriving an
implementing from the Analysis, including Structural Architecture,
Design Templates, and Base Mechanisms. This typically is conducted
largely in parallel with Analysis.

Design Policies A set of Design Patterns that define how the language-specific
implementation code for the Analysis will be translated from the
Analysis models. These are captured as template files in the specific
notation of the UML Essentials Springboard translation engine.

Dynamic Verification The process of exercising an analyzed domain Model in isolation to
ensure that it behaves correctly. This is usually done with an external
driver taking the part of the clients and servers of the domain being
tested.

Execution-Specific
Requirements

All requirements that define how the system under development will
execute in its specific deployment environment, including task and
processor topology and allocation, general capacities, performance,
operating system interfaces, and application-independent capabilities

Implementation
libraries

Realized system components supporting a specific compiler, language,
or operating system environment

Realized elements System components that have not been analyzed, and are typically
hand-written code, generated from a specific environment (like a GUI
builder or math algorithm environment), or purchased from a third party

Translation The process of executing the Springboard translation engine to
generate the complete implementation code for all Analysis Models

