
PI-MDD Modeling Conventions

1

Platform Independent MDD
Modeling Conventions

Version 3.0

January 21, 2009

PathMATE™ Series

Pathfinder Solutions
33 Commercial Street, Suite 2

 Foxboro, MA 02035 USA

www.pathfindermdd.com
+1 508-568-0068

PI-MDD Modeling Conventions

2

Table of Contents

1. Introduction.. 3

2. General Conventions ... 3

Naming and Descriptions.. 3
Naming Conventions – Capitalization and Underscores.................................. 4
Diagrams ... 4

3. Diagram-Specific Conventions... 6

Domain Model... 6
Class Diagram .. 6
Scenario Models.. 7
State Model.. 8
Actions .. 9
User-Defined Types ..10

PI-MDD Modeling Conventions

3

1. Introduction
This document provides a summary of common rules and conventions
applied to Platform-Independent Model Driven Development (PI-MDD)
of complex systems. These rules and conventions have been
developed to ensure the models are:

• Populated with clear, valid, and consistent abstractions

• Free of human errors caused by inconsistencies or unclear
contexts

• Valuable to both the maintenance developer and the external
expert reviewer

Please note that these conventions assume a base of syntactically
correct models that pass all checks provided in the PathMATE
Transformation Engine.

It is assumed that the reader is familiar with the PI-MDD approach as
outlined in Model Based Software Engineering: Rigorous Software
Development with Domain Modeling, Pathfinder Solutions. (This paper
is available from www.pathfindermdd.com.).

For the best foundation in PI-MDD take the Effective MDD 5-day
course from Pathfinder Solutions.

2. General Conventions

Naming and Descriptions

While the UML notation provides some semantic meaning through the
graphic icons employed, there are many contexts where the true
essence of specific abstractions is unclear. To help rapidly build an
accurate understanding of the model for the model reader, the model
authors must work to name model elements in a clear and creative
way, and also capture an effective, appropriate and complete
description.

It is helpful to narrow the scope of the naming/description problems:
assume the reader is:

• Familiar with UML in general, with the general principles of PI-
MDD, and are able either to navigate in your UML model
environment or in the generated document they are using to read
the model.

• Generally knowledgeable in the system concept of operations at a
high level, and at least somewhat familiar with any specific
domain’s subject matter they may be reviewing.

• Not familiar with any of the specifics of the model you have
constructed and not privy to (or does not remember) any specific
modeling rationale you have applied.

PI-MDD Modeling Conventions

4

Beyond their overview knowledge of the problem space you must
either tell them (or reference documents that will tell them) everything
else they will need to know to understand and perhaps even
maintain/extend your model.

Effective model element names and descriptions are:

• Clear, concise, and unambiguous

• Appropriate to the subject matter of their domain

In addition, element descriptions should take care to avoid restating
points apparent from the analysis itself. For example, avoid an
attribute description that starts with “This is the attribute of the
Foo class which…”. Similarly names of model elements should not
try to identify what type of model element it is, for example avoid
names like TargetClass or CTarget, and attr_BananaCount.

Naming Conventions – Capitalization and Underscores

In contrast to disliked naming conventions CTarget and
attr_BananaCount that consume both actual space in a name and
also conceptual space in the mind, it is preferred to use a simple
system of capitalization and underscores to help the model reader
rapidly confirm a model element's type, especially at the Action
Language level. (The rules are in regular expression syntax.)

• DomainName, DomainServiceName, ClassName, StateName,
SignalName: [A-Z][A-Z,a-z,0-9]*

• attributeName, classOperationName: [a-z][A-Z,a-z,0-9]*
(Some organizations choose to start static class operations names
with a capital letter.)

• data_type_name_t (for non-enum project-specific data types):
[a-z][a-z,0-9_]*_t

• enum_name_e (for project-specific enumerates): [a-z][a-z,0-
9_]*_e

• SYMBOLIC_CONSTANT, ENUMERATE_LABEL: [A-Z][A-Z,0-9,_]*

• action_local_variable, service_parameter, operation_parameter,
signal_parameter: [a-z][a-z,0-9_]*

• association_role_phrase: [a-z][a-z,0-9_]*

Diagrams

Software modeling affords the benefits of a two-dimensional form of
expression – diagrams. A diagram can convey a lot of information in a
small space – provided the needs of the reader are kept in mind.

• Diagram Descriptions – use these to identify organizational
information your specific process may have you record, such as
the include the author’s name, and a document version number.

PI-MDD Modeling Conventions

5

• The graphical layout groups related diagram elements together,
and maintains uniform alignment and spacing to reinforce this
grouping.

• Use colors to indicate major differences in model elements, and
provide keys on the diagram:

• Care is taken in layout of connecting lines to avoid line crossover
where possible.

• Connecting lines are routed with a minimum of intermediate
nodes.

• When routing many (3 or more) connecting lines around a
common obstacle, group or bundle them in a way to reduce
clutter:

PI-MDD Modeling Conventions

6

3. Diagram-Specific Conventions

Domain Model

• Name domains to be reusable and independent of vendor. For
example, choose GUIToolkit, not MSVisualEnvironment.

• Inter domain dependancy lines are straight, and at any angle.

Class Diagram

• Class names are singular, for example Alarm, not Alarms. Use a
association multiplicity (*) to show plurality instead.

• Attributes are named from the perspective of their classes. This
can afford some economy in the name, EG: for the Hospital class
use mainPhoneNumber instead of hospitalMainPhoneNumber.

• Association names are A<number>.

• Avoid "multiple inheritance" generalization:

• Do not use disjoint generalization hierarchies. For example:

Instead use a discriminant attribute (where appropriate):

PI-MDD Modeling Conventions

7

• Association and generalization lines are straight and orthogonal.

• Association names are located near the center of association lines.

• Association role phrases are located near their respective ends of
their of association lines.

• Prefer verb-style role phrases to noun-style

• Always specify at least one role phrase

• Only specify a second role phrase (for the other participant) if it
adds information to the model – avoid mechanically reflexive roles

• The supertype ends of generalization lines are aligned to present a
single arrowhead.

• Use colors to identify major types of classes – white for plain, blue
for active (have state machines), yellow for specification, and
green for association:

Scenario Models

All

 Show a single logical path for each individual scenario model.

 Capture many scenarios to see what they may reveal, but only
keep those that add meaningful new information to the core set
you already have.

 Prefer to use asynchronous message arrows, unless the
invoked domain service or class operation must return a value.

PI-MDD Modeling Conventions

8

 Name each domain's interface class with "<domain name>
services", or "<domain prefix> services" if space it at a
premium.

System Level

 Only show lifelines for domains interface classes

 When drawing message lines, first create the domain service,
quickly capture a preliminary definition for it, and then use it on
the message line. Defer abstracting parameters unless they
are essential to the meaning of the service.

 On message lines only show domain services. (Avoid free text
or other.)

Domain Level

• Show the “local” domain interface as the first object lifeline on the
left.

• Show server domains as the last object lifelines on the right.

• In general, show external impetus as coming from an external
actor lifeline called "Client" at the far left to avoid specifying a
specific client domain.

• Show only the following types of messages:

 Domain service

 Class operation

 Class instance Create

 Class instance Delete

 Signal (generation)

State Model

• State names convey the lifecycle stage of a class instance for
some finite span of time. Their names need to reinforce this, and
present perfect tense can help. For example, use RaisingRamp
instead of RaiseRamp.

• Signal names identify a single instance in time, and past tense
can help. Their names can reinforce this. For example, use
DoorClosed instead of DoorClose.

• Prefer Signal names that identify an incident or condition instead
of a command: TemperatureThresholdExceeded instead of
StartCooling.

• Use curved transition lines when available, or straight and
orthogonal lines.

• Signal labels are located near the source end of their transition
lines.

PI-MDD Modeling Conventions

9

Actions

In specifying Actions it is important to follow some of the more general
rules of structured programming:

• Only services returning a specific value need an explicit RETURN.

• When necessary, use a single RETURN statement.

• Reduce individual action scope to fit within 100 lines.

• Have a single statement on a line.

• Indent statement frames consistently within control structures.

• Provide liberal commenting, including:

 summary at the top of the action, or in the state action
summary

 descriptions for control logic at each statement frame of a
control structure (IF/ELSE, FOREACH, WHILE)

 something for any line that is not patently self explanatory

Proper action modeling is necessary to enforce the rules and policies of
the domain. Unconditional associations need to be enforced by the
actions:

• When creating an instance of a class that has an unconditional
relationship, the associated class instance should either be pre-
existing or created shortly afterward, in the same action.

• Link unconditional associations as soon as possible after creating
the participants, but always by the end of the action.

Even unconditional associations, however, do not guarantee successful
navigation. An explicit LINK must have been completed before
navigation:

• In all navigations, either provide defensive logic to check for NULL
to handle “not found” cases, or explicitly comment where (action
name) the link is guaranteed to have happened.

Separating the retrieval of an instance reference from its subsequent
use can aid Design-level error catching, help with readability, and aid
debugability:

• When invoking a service or method that returns an instance
reference, catch this reference in a variable before using it. For
example, instead of using this:

MO:PickBiggest().selected = TRUE;

do this:

Ref<MyObject> mo;
mo = MO:PickBiggest();
IF (mo != NULL)
{

PI-MDD Modeling Conventions

10

mo.selected = TRUE;
}

User-Defined Types

In an effort to help the analyst understand where various types are
defined and to afford a form of name-space scooping at the
implementation level, the following naming conventions are applied to
user defined types.

Scope Identification

• System-level data types are prefixed with “sys_”

• System-level symbolic constants and enumerate labels are
prefixed with “SYS_”

• Domain-level data types are prefixed with “<domain prefix>_” (in
lowercase)

• Domain-level symbolic constants and enumerate labels are
prefixed with “<DOMAIN PREFIX>_” (in uppercase)

Enumerate Label Grouping with Enumerate Type

Even with defining scope prefixes on enumerate labels, it can be very
difficult to identify which enumerate type definition and enumerate
label is defined within without help. This convention helps in a type
scope with many enumerate types:

• Enumerate label names are built from the scope prefix, and an
identifying segment from the enumerate type name, followed by
an identifying element from this value. Example: ENUM
sys_traffic_light_color_e { SYS_TRAFFIC_LIGHT_RED,
SYS_TRAFFIC_LIGHT_GREEN, SYS_TRAFFIC_LIGHT_BLUE}.
(Sorry – we’re out of yellow.)

